Zaal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4792802/publications.pdf

Version: 2024-02-01

110317 186209 8,018 74 28 64 citations h-index g-index papers 74 74 74 6024 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Sustainable Coastal Tourism in Tanjung Kelayang, Indonesia. Tourism Planning and Development, 2021, 18, 365-370.	1.3	3
2	Tocopherol contents and antioxidant activity in grape pomace after fermentation and alcohol distillation. Cellular and Molecular Biology, 2021, 67, 112-115.	0.3	4
3	Network motifs involving both competition and facilitation predict biodiversity in alpine plant communities. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	47
4	Gradient analysis of soil-plant interactions from the alpine-nival ecotone to the snowline on slopes of the Central Great Caucasus (Kazbegi Region, Georgia). Ukrainian Botanical Journal, 2021, 78, 163-175.	0.1	0
5	Unity in diversity—food plants and fungi of Sakartvelo (Republic of Georgia), Caucasus. Journal of Ethnobiology and Ethnomedicine, 2021, 17, 72.	1.1	10
6	Ethnobotany of the Silk Road – Georgia, the Cradle of Wine. , 2020, , 229-254.		0
7	Variable soil pH can drive changes in slope aspect preference of plants in alpine desert of the Central Great Caucasus (Kazbegi district, Georgia). Acta Oecologica, 2020, 105, 103582.	0.5	7
8	Climatic drivers of ecological divergence among the genera of the tribe Stipeae in Turkey. Flora: Morphology, Distribution, Functional Ecology of Plants, 2020, 270, 151650.	0.6	1
9	Ethnobotany of Mountain Regions: Far Eastern Europe. Ethnobotany of Mountain Regions, 2020, , 3-43.	0.0	10
10	Jumping the barrier: Does a glacier tongue affect species distribution along the elevation gradient in the subnival and nival belts? A case study on Mt. Kazbegi, Georgia, Central Great Caucasus Mountains. Botanica Serbica, 2020, 44, 219-229.	0.4	1
11	Solanum melongena L. Solanum nigrum L. Solanum tuberosum L. Solanaceae. Ethnobotany of Mountain Regions, 2020, , 1-12.	0.0	0
12	Solanum melongena L. Solanum nigrum L. Solanum tuberosum L. Solanaceae. Ethnobotany of Mountain Regions, 2020, , 885-895.	0.0	0
13	Effects of a Gut Microbiome Toxin, p-Cresol, on the Contents of the NMDA2B Receptor Subunit in the Nucl. Accumbens of Rats. Neurophysiology, 2019, 51, 72-76.	0.2	2
14	The Use of "Use Valueâ€! Quantifying Importance in Ethnobotany. Economic Botany, 2019, 73, 293-303.	0.8	31
15	Climatic drivers of woody species distribution in the Central Anatolian forest-steppe. Journal of Arid Environments, 2019, 169, 34-41.	1.2	0
16	Quantifying plant interactions: Independent reference is critical for standardising the importance indices. Journal of Vegetation Science, 2019, 30, 397-401.	1.1	1
17	Ethnobotany of Mountain Regions: Far Eastern Europe. Ethnobotany of Mountain Regions, 2019, , 1-41.	0.0	0
18	Tourism sustainability in the Bogor Botanical Gardens, Indonesia. Urban Forestry and Urban Greening, 2018, 30, 8-11.	2.3	3

#	Article	IF	CITATIONS
19	Effects of a Gut Microbiome Toxin, p-Cresol, on the Susceptibility to Seizures in Rats. Neurophysiology, 2018, 50, 424-427.	0.2	4
20	Effects of a Gut Microbiome Toxin, p-Cresol, on the Indices of Social Behavior in Rats. Neurophysiology, 2018, 50, 372-377.	0.2	9
21	A traitâ€based approach to understand the consequences of specific plant interactions for community structure. Journal of Vegetation Science, 2017, 28, 696-704.	1.1	25
22	Plant and fungal use in Tusheti, Khevsureti, and Pshavi, Sakartvelo (Republic of Georgia), Caucasus. Acta Societatis Botanicorum Poloniae, 2017, 86, .	0.8	372
23	Ethnobotany of the Caucasus – Georgia. European Ethnobotany, 2017, , 47-63.	0.0	5
24	Ethnobotany of the Caucasus – The Region. European Ethnobotany, 2017, , 3-20.	0.0	1
25	Ethno-ecological contexts of the Skhalta Gorge and the Upper Svaneti (Georgia, the Caucasus). Journal of Political Ecology, 2016, 23, .	0.4	2
26	Your Poison in My Pieâ€"the Use of Potato (Solanum tuberosum L.) Leaves in Sakartvelo, Republic of Georgia, Caucasus, and Gollobordo, Eastern Albania. Economic Botany, 2016, 70, 431-437.	0.8	13
27	Facilitation among plants as an insurance policy for diversity in Alpine communities. Functional Ecology, 2016, 30, 52-59.	1.7	56
28	A comparative ethnobotany of Khevsureti, Samtskhe-Javakheti, Tusheti, Svaneti, and Racha-Lechkhumi, Republic of Georgia (Sakartvelo), Caucasus. Journal of Ethnobiology and Ethnomedicine, 2016, 12, 43.	1.1	833
29	Ethnobotany of the Caucasus – Georgia. European Ethnobotany, 2016, , 1-17.	0.0	11
30	Ethnobotany of the Caucasus – The Region. European Ethnobotany, 2016, , 1-18.	0.0	0
31	The effects of foundation species on community assembly: a global study on alpine cushion plant communities. Ecology, 2015, 96, 2064-2069.	1.5	53
32	Loss of traditional knowledge aggravates wolf–human conflict in Georgia (Caucasus) in the wake of socio-economic change. Ambio, 2015, 44, 452-457.	2.8	18
33	STUDY ON THE EFFECTIVENESS OF AN AGRICULTURAL TECHNIQUE BASED ON AEOLIAN DEPOSITION, IN A SEMIARID ENVIRONMENT. Environmental Engineering and Management Journal, 2015, 14, 1143-1150.	0.2	20
34	The context dependence of beneficiary feedback effects on benefactors in plant facilitation. New Phytologist, 2014, 204, 386-396.	3.5	37
35	A global analysis of bidirectional interactions in alpine plant communities shows facilitators experiencing strong reciprocal fitness costs. New Phytologist, 2014, 202, 95-105.	3.5	79
36	Facilitative plant interactions and climate simultaneously drive alpine plant diversity. Ecology Letters, 2014, 17, 193-202.	3.0	274

#	Article	IF	Citations
37	Ground beetle community in suburban Satoyama — A case study on wing type and body size under small scale management. Journal of Asia-Pacific Entomology, 2014, 17, 775-780.	0.4	18
38	Deer herbivory as an important driver of divergence of ground vegetation communities in temperate forests. Oikos, 2013, 122, 104-110.	1.2	43
39	Alpine cushion plants inhibit the loss of phylogenetic diversity in severe environments. Ecology Letters, 2013, 16, 478-486.	3.0	151
40	Mycorrhizal Cirsium purpuratum improves the growth of Clematis stans in volcanic scoria of Mount Fuji. Mycoscience, 2013, 54, 279-284.	0.3	0
41	The concept and measurement of importance: a comment on Rees <i>etÂal</i> . 2012. Journal of Ecology, 2013, 101, 1369-1378.	1.9	8
42	Assessing the biomass and distribution of submerged aquatic vegetation using multibeam echo sounding in Lake Towada, Japan. Limnology, 2013, 14, 39-42.	0.8	8
43	Life form and preference can drive spatial relationships among plant species in semi-arid rangelands of middle Iran. Rangeland Journal, 2013, 35, 63.	0.4	6
44	Combining observational and experimental methods in plant–plant interaction research. Plant Ecology and Diversity, 2012, 5, 27-36.	1.0	23
45	Importance versus intensity of ecological effects: why context matters. Trends in Ecology and Evolution, 2011, 26, 383-388.	4.2	46
46	Conceptualizing importance: response to Freckleton and Rees. Trends in Ecology and Evolution, 2011, 26, 499-500.	4.2	5
47	Climatic drivers of plant–plant interactions and diversity in alpine communities. Alpine Botany, 2011, 121, 63-70.	1.1	47
48	Assembly rules for ground beetle communities: What determines community structure, environmental factors or competition?. European Journal of Entomology, 2011, 108, 453-459.	1.2	15
49	Plant Interaction Indices Based on Experimental Plant Performance Data., 2010,, 17-38.		11
50	Hydraulic lift: soil processes and transpiration in the Mediterranean leguminous shrub Retama sphaerocarpa (L.) Boiss. Plant and Soil, 2010, 329, 447-456.	1.8	74
51	Counterbalancing effects of competition for resources and facilitation against grazing in alpine snowbed communities. Oikos, 2010, 119, 1571-1580.	1.2	19
52	Towards a more exact definition of the importance of competition – a reply to Freckleton <i>etÂal.</i> (2009). Journal of Ecology, 2010, 98, 719-724.	1.9	17
53	Abiotic conditions, neighbour interactions, and the distribution of Stipa tenacissima in a semiarid mountain range. Journal of Arid Environments, 2009, 73, 1084-1089.	1.2	12
54	Ecological Facilitation May Drive Major Evolutionary Transitions. BioScience, 2009, 59, 399-404.	2.2	47

#	Article	IF	Citations
55	Donâ∈™t Diss Integration: A Comment on Ricklefsâ∈™s Disintegrating Communities. American Naturalist, 2009, 174, 919-927.	1.0	83
56	Facilitation in plant communities: the past, the present, and the future. Journal of Ecology, 2008, 96, 18-34.	1.9	788
57	Importance: an overlooked concept in plant interaction research. Journal of Ecology, 2008, 96, 703-708.	1.9	344
58	Do biotic interactions shape both sides of the humped-back model of species richness in plant communities? Ecology Letters, 2006, 9, 767-773.	3.0	517
59	Seasonal shifts in competition and facilitation in subalpine plant communities of the central Caucasus. Journal of Vegetation Science, 2006, 17, 77-82.	1.1	103
60	The effect of initial biomass in manipulative experiments on plants. Functional Ecology, 2006, 20, 1-3.	1.7	12
61	Seasonal shifts in competition and facilitation in subalpine plant communities of the central Caucasus. Journal of Vegetation Science, 2006, 17, 77.	1.1	7
62	Smallâ€scale guild proportions and niche complementarity in a Caucasian subalpine hay meadow. Journal of Vegetation Science, 2005, 16, 565-570.	1.1	17
63	The importance of importance. Oikos, 2005, 109, 63-70.	1.2	289
64	LINKING PATTERNS AND PROCESSES IN ALPINE PLANT COMMUNITIES: A GLOBAL STUDY. Ecology, 2005, 86, 1395-1400.	1.5	203
65	The value of stress and limitation in an imperfect world: A reply to Körner. Journal of Vegetation Science, 2004, 15, 577-580.	1.1	40
66	Rethinking plant community theory. Oikos, 2004, 107, 433-438.	1.2	479
67	Measuring the number of co-dominants in ecological communities. Ecological Research, 2002, 17, 519-525.	0.7	21
68	Positive interactions among alpine plants increase with stress. Nature, 2002, 417, 844-848.	13.7	1,821
69	Facilitation and interference in subalpine meadows of the central Caucasus. Journal of Vegetation Science, 2001, 12, 833-838.	1.1	38
70	Modelling species richness and diversity in grassland communities of the Central Caucasus. Oikos, 2000, 89, 123-127.	1.2	3
71	Facilitation by unpalatable weeds may conserve plant diversity in overgrazed meadows in the Caucasus Mountains. Oikos, 2000, 89, 275-282.	1.2	107
72	Facilitation in subnival vegetation patches. Journal of Vegetation Science, 1998, 9, 261-264.	1.1	55

#	Article	IF	CITATIONS
73	Plant species associations in alpine-subnival vegetation patches in the Central Caucasus. Journal of Vegetation Science, 1993, 4, 297-302.	1.1	36
74	Wine, Beer, Snuff, Medicine, and Loss of Diversity - Ethnobotanical travels in the Georgian Caucasus. Ethnobotany Research and Applications, 0, 12, 237.	0.3	573