
Libo Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4792499/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly selective and efficient electroreduction of CO ₂ in water by quaterpyridine derivativeâ€based molecular catalyst noncovalently tethered to carbon nanotubes. SmartMat, 2022, 3, 151-162.	6.4	12
2	Enlarging the π onjugation of Cobalt Porphyrin for Highly Active and Selective CO ₂ Electroreduction. ChemSusChem, 2021, 14, 2126-2132.	3.6	31
3	Heterogeneous carbon dioxide reduction reaction by cobalt complexes of 4′,4′′′-disubstituted derivatives of quinquepyridine immobilized on carbon black. Electrochimica Acta, 2021, 380, 138224.	2.6	1
4	Effects of Axial Functional Groups on Heterogeneous Molecular Catalysts for Electrocatalytic CO ₂ Reduction. Small Structures, 2021, 2, 2100093.	6.9	9
5	Electrocatalytic reduction of carbon dioxide: opportunities with heterogeneous molecular catalysts. Energy and Environmental Science, 2020, 13, 374-403.	15.6	303
6	Two zinc metal–organic framework isomers based on pyrazine tetracarboxylic acid and dipyridinylbenzene for adsorption and separation of CO ₂ and light hydrocarbons. Dalton Transactions, 2020, 49, 1135-1142.	1.6	25
7	A zwitterionic ligand-based water-stable metal–organic framework showing photochromic and Cr(<scp>vi</scp>) removal properties. Dalton Transactions, 2020, 49, 10613-10620.	1.6	16
8	Isolated FeN ₄ Sites for Efficient Electrocatalytic CO ₂ Reduction. Advanced Science, 2020, 7, 2001545.	5.6	81
9	Ir-skinned Ir-Cu Nanoparticles with Enhanced Activity for Oxygen Reduction Reaction. Chemical Research in Chinese Universities, 2020, 36, 467-472.	1.3	5
10	A Planar, Conjugated N ₄ â€Macrocyclic Cobalt Complex for Heterogeneous Electrocatalytic CO ₂ Reduction with High Activity. Angewandte Chemie - International Edition, 2020, 59, 17104-17109.	7.2	80
11	A Planar, Conjugated N ₄ â€Macrocyclic Cobalt Complex for Heterogeneous Electrocatalytic CO ₂ Reduction with High Activity. Angewandte Chemie, 2020, 132, 17252-17257.	1.6	14
12	Optimizing interfacial electronic coupling with metal oxide to activate inert polyaniline for superior electrocatalytic hydrogen generation. , 2019, 1, 77-84.		50
13	Selective Electroreduction of Carbon Dioxide to Formic Acid on Cobaltâ€Decorated Copper Thin Films. Small Methods, 2019, 3, 1900362.	4.6	19
14	A stable pillared metal–organic framework constructed by H 4 TCPP ligand as luminescent sensor for selective detection of TNP and Fe 3+ ions. Applied Organometallic Chemistry, 2019, 33, e5243.	1.7	15
15	Lithiation/Delithiation Synthesis of Few Layer Silicene Nanosheets for Rechargeable Li–O ₂ Batteries. Advanced Materials, 2018, 30, e1705523.	11.1	51
16	A Zwitterionic Ligandâ€Based Cationic Metalâ€Organic Framework for Rapidly Selective Dye Capture and Highly Efficient Cr ₂ 0 ₇ ^{2â^'} Removal. Chemistry - A European Journal, 2018, 24, 2718-2724.	1.7	69
17	Water Stable Metal–Organic Framework Based on Phosphono-containing Ligand as Highly Sensitive Luminescent Sensor toward Metal Ions. Crystal Growth and Design, 2018, 18, 7683-7689.	1.4	47
18	Electrochemical oxidation of C3 saturated alcohols on Co3O4 in alkaline. Electrochimica Acta, 2017, 228, 183-194.	2.6	45

Libo Sun

#	Article	IF	CITATIONS
19	Metal–organic frameworks based on bipyridinium carboxylate: photochromism and selective vapochromism. Journal of Materials Chemistry C, 2017, 5, 2084-2089.	2.7	81
20	Phosphate tuned copper electrodeposition and promoted formic acid selectivity for carbon dioxide reduction. Journal of Materials Chemistry A, 2017, 5, 11905-11916.	5.2	46
21	Multifunctional Zinc Metal–Organic Framework Based on Designed H ₄ TCPP Ligand with Aggregation-Induced Emission Effect: CO ₂ Adsorption, Luminescence, and Sensing Property. Crystal Growth and Design, 2017, 17, 2090-2096.	1.4	84
22	Synthesis, structure and gas adsorption properties of a stable microporous Cu-based metal–organic framework assembled from a T-shaped pyridyl dicarboxylate ligand. RSC Advances, 2017, 7, 17697-17703.	1.7	5
23	Selective Electrochemical Reduction of CO ₂ to Ethylene on Nanopores-Modified Copper Electrodes in Aqueous Solution. ACS Applied Materials & Interfaces, 2017, 9, 32782-32789.	4.0	75
24	A novel photo- and hydrochromic europium metal–organic framework with good anion sensing properties. Journal of Materials Chemistry C, 2017, 5, 8999-9004.	2.7	133
25	Electrochemical production of lactic acid from glycerol oxidation catalyzed by AuPt nanoparticles. Journal of Catalysis, 2017, 356, 14-21.	3.1	128
26	Two Functional Porous Metal–Organic Frameworks Constructed from Expanded Tetracarboxylates for Gas Adsorption and Organosulfurs Removal. Crystal Growth and Design, 2016, 16, 7301-7307.	1.4	20
27	Lanthanide metal–organic frameworks based on a 1,2,3-triazole-containing tricarboxylic acid ligand for luminescence sensing of metal ions and nitroaromatic compounds. RSC Advances, 2016, 6, 57828-57834.	1.7	36
28	Solvent-induced construction of two zinc metal–organic frameworks for highly selective detection of nitroaromatic explosives. CrystEngComm, 2016, 18, 4102-4108.	1.3	30
29	Novel photo- and/or thermochromic MOFs derived from bipyridinium carboxylate ligands. Inorganic Chemistry Frontiers, 2016, 3, 814-820.	3.0	59
30	A microporous lanthanum metal–organic framework as a bi-functional chemosensor for the detection of picric acid and Fe ³⁺ ions. Dalton Transactions, 2015, 44, 13340-13346.	1.6	114
31	Three Metal–Organic Frameworks Based on Binodal Inorganic Building Units and Hetero-O, N Donor Ligand: Solvothermal Syntheses, Structures, and Gas Sorption Properties. Crystal Growth and Design, 2015, 15, 4901-4907.	1.4	55
32	A luminescent cadmium metal–organic framework for sensing of nitroaromatic explosives. Dalton Transactions, 2015, 44, 230-236.	1.6	137
33	Octavinylsilsesquioxane-based luminescent nanoporous inorganic–organic hybrid polymers constructed by the Heck coupling reaction. Polymer Chemistry, 2015, 6, 917-924.	1.9	51
34	One-pot Suzuki-Heck Reaction to Construct Luminescent Microporous Organic Polymers Based on 4-Vinylphenylbororic Acid. Acta Chimica Sinica, 2015, 73, 611.	0.5	3
35	A one-pot synthetic strategy via tandem Suzuki–Heck reactions for the construction of luminescent microporous organic polymers. Polymer Chemistry, 2014, 5, 471-478.	1.9	67
36	Four-connected metal–organic frameworks constructed by tetracarboxylate acid-based ligands. Inorganic Chemistry Frontiers, 2014, 1, 478.	3.0	13

Libo Sun

#	Article	IF	CITATIONS
37	Conformational Supramolecular Isomerism in Two-Dimensional Fluorescent Coordination Polymers Based on Flexible Tetracarboxylate Ligand. Crystal Growth and Design, 2013, 13, 4092-4099.	1.4	46
38	A new porous 2D copper(II) metal–organic framework for selective adsorption of CO2 over N2. Inorganic Chemistry Communication, 2013, 38, 104-107.	1.8	9
39	Design and Synthesis of Two Porous Metal–Organic Frameworks with <i>nbo</i> and <i>agw</i> Topologies Showing High CO ₂ Adsorption Capacity. Inorganic Chemistry, 2013, 52, 10720-10722.	1.9	41
40	A 4 + 4 strategy for synthesis of zeolitic metal–organic frameworks: an indium-MOF with SOD topology as a light-harvesting antenna. Chemical Communications, 2013, 49, 11155.	2.2	96
41	A novel (3,3,6)-connected luminescent metal–organic framework for sensing of nitroaromatic explosives. Dalton Transactions, 2013, 42, 5508.	1.6	115
42	Luminescent microporous organic polymers containing the 1,3,5-tri(4-ethenylphenyl)benzene unit constructed by Heck coupling reaction. Polymer Chemistry, 2013, 4, 1932.	1.9	97
43	Structures and properties of lanthanide metal–organic frameworks based on a 1,2,3-triazole-containing tetracarboxylate ligand. Dalton Transactions, 2012, 41, 12790.	1.6	50
44	A new lanthanide metal-organic framework with (3,6)-connected topology based on novel tricarboxylate ligand. Inorganic Chemistry Communication, 2011, 14, 978-981.	1.8	29