Gheorghe Doru G Roiban

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4792239/publications.pdf Version: 2024-02-01

		394421	345221
42	1,313	19	36
papers	citations	h-index	g-index
53	53	53	1459
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Green Chemistry Articles of Interest to the Pharmaceutical Industry. Organic Process Research and Development, 2021, 25, 703-712.	2.7	1
2	Expanding the Substrate Scope of Nitrating Cytochrome P450 TxtE by Active Site Engineering of a Reductase Fusion. ChemBioChem, 2021, 22, 2262-2265.	2.6	11
3	Green Chemistry Articles of Interest to the Pharmaceutical Industry. Organic Process Research and Development, 2020, 24, 334-346.	2.7	5
4	Green Chemistry Articles of Interest to the Pharmaceutical Industry. Organic Process Research and Development, 2019, 23, 2287-2301.	2.7	0
5	N-Alkyl-α-amino acids in Nature and their biocatalytic preparation. Journal of Biotechnology, 2019, 293, 56-65.	3.8	28
6	Green Chemistry Articles of Interest to the Pharmaceutical Industry. Organic Process Research and Development, 2019, 23, 1118-1133.	2.7	4
7	Biocatalysis: A Pharma Perspective. Advanced Synthesis and Catalysis, 2019, 361, 2421-2432.	4.3	168
8	Chiral synthesis of LSD1 inhibitor GSK2879552 enabled by directed evolution of an imine reductase. Nature Catalysis, 2019, 2, 909-915.	34.4	135
9	Identification and Implementation of Biocatalytic Transformations in Route Discovery: Synthesis of Chiral 1,3-Substituted Cyclohexanone Building Blocks. Organic Process Research and Development, 2018, 22, 871-879.	2.7	21
10	Biocatalytic Synthesis of Chiral Nâ€Functionalized Amino Acids. Angewandte Chemie - International Edition, 2018, 57, 13821-13824.	13.8	34
11	Biocatalytic Synthesis of Chiral Nâ€Functionalized Amino Acids. Angewandte Chemie, 2018, 130, 14017-14020.	2.0	14
12	Green Chemistry Articles of Interest to the Pharmaceutical Industry. Organic Process Research and Development, 2018, 22, 667-680.	2.7	3
13	Di– <i>tert–</i> butyl <i>N,N</i> â€diethylphosphoramidite as an Air Stable Ligand for Suzukiâ€Miyaura and Buchwaldâ€Hartwig Reactions. ChemistrySelect, 2017, 2, 1392-1397.	1.5	6
14	Green Chemistry Articles of Interest to The Pharmaceutical Industry. Organic Process Research and Development, 2017, 21, 1464-1477.	2.7	1
15	Efficient Biocatalytic Reductive Aminations by Extending the Imine Reductase Toolbox. ChemCatChem, 2017, 9, 4475-4479.	3.7	75
16	Development of an Enzymatic Process for the Production of (<i>R</i>)-2-Butyl-2-ethyloxirane. Organic Process Research and Development, 2017, 21, 1302-1310.	2.7	14
17	Green Chemistry Articles of Interest to the Pharmaceutical Industry. Organic Process Research and Development, 2016, 20, 707-717.	2.7	2
18	Biocatalytic Route to Chiral Acyloins: P450-Catalyzed Regio- and Enantioselective α-Hydroxylation of Ketones. Journal of Organic Chemistry, 2015, 80, 950-956.	3.2	37

#	Article	IF	CITATIONS
19	P450-catalyzed regio- and stereoselective oxidative hydroxylation ofÂdisubstituted cyclohexanes: creation of three centers of chirality in a single CH-activation event. Tetrahedron, 2015, 71, 470-475.	1.9	11
20	Expanding the toolbox of organic chemists: directed evolution of P450 monooxygenases as catalysts in regio- and stereoselective oxidative hydroxylation. Chemical Communications, 2015, 51, 2208-2224.	4.1	135
21	Cytochrome P450 Catalyzed Oxidative Hydroxylation of Achiral Organic Compounds with Simultaneous Creation of Two Chirality Centers in a Single CH Activation Step. Angewandte Chemie - International Edition, 2014, 53, 8659-8663.	13.8	63
22	Palladiumâ€Catalysed Amination of Aryl―and Heteroaryl Halides Using <i>tert</i> â€Butyl Tetraisopropylphosphorodiamidite as an Easily Accessible and Airâ€Stable Ligand. European Journal of Organic Chemistry, 2014, 2014, 2070-2076.	2.4	21
23	CH-activating oxidative hydroxylation of 1-tetralones and related compounds with high regio- and stereoselectivity. Chemical Communications, 2014, 50, 14310-14313.	4.1	39
24	The Chelation-controlled Mukaiyama Aldol Reaction of Chiral α- and β-Alkoxy Aldehydes. Chemistry Letters, 2014, 43, 2-10.	1.3	20
25	A New Type of Stereoselectivity in Baeyer–Villiger Reactions: Access to <i>E</i> ―and <i>Z</i> â€Olefins. Advanced Synthesis and Catalysis, 2013, 355, 99-106.	4.3	30
26	Induced Axial Chirality in Biocatalytic Asymmetric Ketone Reduction. Journal of the American Chemical Society, 2013, 135, 1665-1668.	13.7	75
27	Enzyme Promiscuity: Using a P450 Enzyme as a Carbene Transfer Catalyst. Angewandte Chemie - International Edition, 2013, 52, 5439-5440.	13.8	26
28	Stereo- and regioselectivity in the P450-catalyzed oxidative tandem difunctionalization of 1-methylcyclohexene. Tetrahedron, 2013, 69, 5306-5311.	1.9	17
29	Reactivity of Unsaturated 5(4 <i>H</i>)-Oxazolones with Hg(II) Acetate: Synthesis of Methyl <i>N</i> -Benzoylamino-3-arylacrylates. Synthetic Communications, 2012, 42, 195-203.	2.1	6
30	A general solid phase method for the synthesis of sequence independent peptidyl-fluoromethyl ketones. Organic and Biomolecular Chemistry, 2012, 10, 4516.	2.8	10
31	Synthesis and Structural Analysis of Some Podands with C ₃ Symmetry. Synthetic Communications, 2012, 42, 3579-3588.	2.1	14
32	Achieving Regio―and Enantioselectivity of P450â€Catalyzed Oxidative CH Activation of Small Functionalized Molecules by Structureâ€Guided Directed Evolution. ChemBioChem, 2012, 13, 1465-1473.	2.6	100
33	Glycine Fluoromethylketones as SENPâ€Specific Activity Based Probes. ChemBioChem, 2012, 13, 80-84.	2.6	32
34	Metal Ion Mediated Self-Assembly Directed Formation of Protein Arrays. Biomacromolecules, 2011, 12, 3400-3405.	5.4	13
35	Regioselective Orthopalladation of (<i>Z</i>)-2-Aryl-4-Arylidene-5(4 <i>H</i>)-Oxazolones: Scope, Kinetico-Mechanistic, and Density Functional Theory Studies of the C–H Bond Activation. Inorganic Chemistry, 2011, 50, 8132-8143.	4.0	41
36	Synthesis and photophysical properties of some 6,6″-functionalized terpyridine derivatives. Open Chemistry, 2011, 9, 218-223.	1.9	0

#	Article	IF	CITATIONS
37	Unsaturated 4,4′-bis-[5(4H)-oxazolones]: Synthesis and evaluation of their ortho-palladation through C–H bond activation. Inorganica Chimica Acta, 2011, 368, 247-251.	2.4	10
38	Protein–Inorganic Array Construction: Design and Synthesis of the Building Blocks. Chemistry - A European Journal, 2010, 16, 2170-2180.	3.3	23
39	Ortho-Palladation of (Z)-2-Aryl-4-Arylidene-5(4H)-Oxazolones. Structure and Functionalization. Organometallics, 2010, 29, 1428-1435.	2.3	16
40	Synthesis of potential fungicides based on N-(3-furanyl)pyrrolecarboxamides and N-(3-furanyl)pyrazolecarboxamides. Monatshefte Für Chemie, 2009, 140, 1349-1359.	1.8	5
41	Unexpected [2 + 2] C–C bond coupling due to photocycloaddition on orthopalladated (Z)-2-aryl-4-arylidene-5(4H)-oxazolones. Chemical Communications, 2009, , 4681.	4.1	31
42	Establishing the NHBoc Functionality asortho-Metallating Group for Furan. Synlett, 2006, 2006, 0789-0791.	1.8	5