Robert F Mullins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4792134/publications.pdf

Version: 2024-02-01

211 papers

15,067 citations

28274 55 h-index 24258 110 g-index

214 all docs

214 docs citations

times ranked

214

12306 citing authors

#	Article	IF	CITATIONS
1	AUTOIMMUNE RETINOPATHY MIMICKING HERITABLE RETINAL DEGENERATION IN A PATIENT WITH COMMON VARIABLE IMMUNE DEFICIENCY. Retinal Cases and Brief Reports, 2022, 16, 111-117.	0.6	4
2	Predominance of hyperopia in autosomal dominant Best vitelliform macular dystrophy. British Journal of Ophthalmology, 2022, 106, 522-527.	3.9	6
3	Local factor H production by human choroidal endothelial cells mitigates complement deposition: implications for macular degeneration. Journal of Pathology, 2022, 257, 29-38.	4.5	12
4	Choroidal endothelial and macrophage gene expression in atrophic and neovascular macular degeneration. Human Molecular Genetics, 2022, 31, 2406-2423.	2.9	26
5	Age-Related Macular Degeneration Masquerade: A Review of Pentosan Polysulfate Maculopathy and Implications for Clinical Practice. Asia-Pacific Journal of Ophthalmology, 2022, 11, 100-110.	2.5	3
6	Inflammatory adipose activates a nutritional immunity pathway leading to retinal dysfunction. Cell Reports, 2022, 39, 110942.	6.4	9
7	Biocompatibility of Human Induced Pluripotent Stem Cell–Derived Retinal Progenitor Cell Grafts in Immunocompromised Rats. Cell Transplantation, 2022, 31, 096368972211044.	2.5	9
8	Patient derived stem cells for discovery and validation of novel pathogenic variants in inherited retinal disease. Progress in Retinal and Eye Research, 2021, 83, 100918.	15.5	16
9	The SWELL1-LRRC8 complex regulates endothelial AKT-eNOS signaling and vascular function. ELife, 2021, 10, .	6.0	41
10	Cell–Matrix Interactions in the Eye: From Cornea to Choroid. Cells, 2021, 10, 687.	4.1	39
11	Genetic Association between MMP9 and Choroidal Neovascularization in Age-Related Macular Degeneration. Ophthalmology Science, 2021, 1, 100002.	2.5	6
12	Human photoreceptor cells from different macular subregions have distinct transcriptional profiles. Human Molecular Genetics, 2021, 30, 1543-1558.	2.9	17
13	VARYING OPTICAL COHERENCE TOMOGRAPHY APPEARANCE OF THE INNER CHOROID WITH AGE. Retina, 2021, 41, 1071-1075.	1.7	2
14	Exome-based investigation of the genetic basis of human pigmentary glaucoma. BMC Genomics, 2021, 22, 477.	2.8	9
15	Microfluidic processing of stem cells for autologous cell replacement. Stem Cells Translational Medicine, 2021, 10, 1384-1393.	3.3	6
16	An Unusual Presentation of CLN3-Associated Batten Disease With Classic Histopathologic and Ultrastructural Findings. Journal of Neuropathology and Experimental Neurology, 2021, 80, 1081-1084.	1.7	2
17	Single-cell RNA sequencing in vision research: Insights into human retinal health and disease. Progress in Retinal and Eye Research, 2021, 83, 100934.	15.5	24
18	Intrafamilial Variability of Ocular Manifestations of von Hippel-Lindau Disease. Ophthalmology Retina, 2021, 6, 89-89.	2.4	1

#	Article	IF	CITATIONS
19	Automated segmentation of choroidal layers from 3-dimensional macular optical coherence tomography scans. Journal of Neuroscience Methods, 2021, 360, 109267.	2.5	5
20	Sensitive quantification of m.3243A>G mutational proportion in non-retinal tissues and its relationship with visual symptoms. Human Molecular Genetics, 2021, , .	2.9	3
21	Development and biological characterization of a clinical gene transfer vector for the treatment of MAK-associated retinitis pigmentosa. Gene Therapy, $2021, , .$	4.5	5
22	Chimeric Helper-Dependent Adenoviruses Transduce Retinal Ganglion Cells and Mýller Cells in Human Retinal Explants. Journal of Ocular Pharmacology and Therapeutics, 2021, 37, 575-579.	1.4	5
23	Correlation of features on OCT with visual acuity and Gass lesion type in Best vitelliform macular dystrophy. BMJ Open Ophthalmology, 2021, 6, e000860.	1.6	5
24	Subretinal pseudocyst: A novel optical coherence tomography finding in age-related macular degeneration. European Journal of Ophthalmology, 2020, 30, NP24-NP26.	1.3	5
25	POSTERIORLY INSERTED VITREOUS BASE. Retina, 2020, 40, 943-950.	1.7	14
26	Spectacle: An interactive resource for ocular single-cell RNA sequencing data analysis. Experimental Eye Research, 2020, 200, 108204.	2.6	47
27	Label-free microfluidic enrichment of photoreceptor cells. Experimental Eye Research, 2020, 199, 108166.	2.6	6
28	Reply. Retina, 2020, 40, e68-e69.	1.7	1
29	Single-cell profiling reveals an endothelium-mediated immunomodulatory pathway in the eye choroid. Journal of Experimental Medicine, 2020, 217, .	8.5	55
30	Stepwise differentiation and functional characterization of human induced pluripotent stem cell-derived choroidal endothelial cells. Stem Cell Research and Therapy, 2020, 11, 409.	5.5	19
31	Retinal Tropism and Transduction of Adeno-Associated Virus Varies by Serotype and Route of Delivery (Intravitreal, Subretinal, or Suprachoroidal) in Rats. Human Gene Therapy, 2020, 31, 1288-1299.	2.7	28
32	Bulk and single-cell gene expression analyses reveal aging human choriocapillaris has pro-inflammatory phenotype. Microvascular Research, 2020, 131, 104031.	2.5	34
33	Single-Cell RNA Sequencing in Human Retinal Degeneration Reveals Distinct Glial Cell Populations. Cells, 2020, 9, 438.	4.1	35
34	Toll-like Receptor 2 Facilitates Oxidative Damage-Induced Retinal Degeneration. Cell Reports, 2020, 30, 2209-2224.e5.	6.4	36
35	Visualization of Mouse Choroidal and Retinal Vasculature Using Fluorescent Tomato Lectin Perfusion. Translational Vision Science and Technology, 2020, 9, 1.	2.2	12
36	Autologous cell replacement: a noninvasive AI approach to clinical release testing. Journal of Clinical Investigation, 2020, 130, 608-611.	8.2	5

3

#	Article	IF	Citations
37	Single-cell transcriptomics of the human retinal pigment epithelium and choroid in health and macular degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24100-24107.	7.1	234
38	Subretinal pseudocysts: A novel OCT finding in diabetic macular edema. American Journal of Ophthalmology Case Reports, 2019, 16, 100567.	0.7	3
39	Association of Genetic Variants With Primary Open-Angle Glaucoma Among Individuals With African Ancestry. JAMA - Journal of the American Medical Association, 2019, 322, 1682.	7.4	50
40	Helper-Dependent Adenovirus Transduces the Human and Rat Retina but Elicits an Inflammatory Reaction When Delivered Subretinally in Rats. Human Gene Therapy, 2019, 30, 1371-1384.	2.7	19
41	Wide-Field Swept-Source OCT and Angiography in X-Linked Retinoschisis. Ophthalmology Retina, 2019, 3, 178-185.	2.4	30
42	Development of a Molecularly Stable Gene Therapy Vector for the Treatment of <i>RPGR</i> -Associated X-Linked Retinitis Pigmentosa. Human Gene Therapy, 2019, 30, 967-974.	2.7	16
43	Two-photon polymerized poly(caprolactone) retinal cell delivery scaffolds and their systemic and retinal biocompatibility. Acta Biomaterialia, 2019, 94, 204-218.	8.3	51
44	Molecular characterization of foveal versus peripheral human retina by single-cell RNA sequencing. Experimental Eye Research, 2019, 184, 234-242.	2.6	102
45	Optimizing Donor Cellular Dissociation and Subretinal Injection Parameters for Stem Cell-Based Treatments. Stem Cells Translational Medicine, 2019, 8, 797-809.	3.3	21
46	Choriocapillaris Degeneration in Geographic Atrophy. American Journal of Pathology, 2019, 189, 1473-1480.	3.8	48
47	Correction of NR2E3 Associated Enhanced S-cone Syndrome Patient-specific iPSCs using CRISPR-Cas9. Genes, 2019, 10, 278.	2.4	27
48	PyMINEr Finds Gene and Autocrine-Paracrine Networks from Human Islet scRNA-Seq. Cell Reports, 2019, 26, 1951-1964.e8.	6.4	61
49	Generation of an immortalized human choroid endothelial cell line (iChEC-1) using an endothelial cell specific promoter. Microvascular Research, 2019, 123, 50-57.	2.5	18
50	The ARMS2 A69S Polymorphism Is Associated with Delayed Rod-Mediated DarkÂAdaptation in Eyes at Risk for Incident Age-Related Macular Degeneration. Ophthalmology, 2019, 126, 591-600.	5 . 2	26
51	EYES WITH SUBRETINAL DRUSENOID DEPOSITS AND NO DRUSEN. Retina, 2019, 39, 12-26.	1.7	26
52	APOPTOSIS AND ANGIOFIBROSIS IN DIABETIC TRACTIONAL MEMBRANES AFTER VASCULAR ENDOTHELIAL GROWTH FACTOR INHIBITION. Retina, 2019, 39, 265-273.	1.7	18
53	CRISPRâ€Cas9â€Based Genome Editing of Human Induced Pluripotent Stem Cells. Current Protocols in Stem Cell Biology, 2018, 44, 5B.7.1-5B.7.22.	3.0	25
54	Feeder-free differentiation of cells exhibiting characteristics of corneal endothelium from human induced pluripotent stem cells. Biology Open, 2018, 7, .	1.2	46

#	Article	IF	CITATIONS
55	CRISPR-Cas9-Mediated Correction of the 1.02 kb Common Deletion in CLN3 in Induced Pluripotent Stem Cells from Patients with Batten Disease. CRISPR Journal, 2018, 1, 75-87.	2.9	15
56	CRISPR-Cas9 genome engineering: Treating inherited retinal degeneration. Progress in Retinal and Eye Research, 2018, 65, 28-49.	15.5	64
57	Evaluation of sFLT1 protein levels in human eyes with the FLT1 rs9943922 polymorphism. Ophthalmic Genetics, 2018, 39, 68-72.	1.2	2
58	Assessment of Adeno-Associated Virus Serotype Tropism in Human Retinal Explants. Human Gene Therapy, 2018, 29, 424-436.	2.7	53
59	Correlation of Optical Coherence Tomography and Retinal Histology in Normal and Pro23His Retinal Degeneration Pig. Translational Vision Science and Technology, 2018, 7, 18.	2.2	13
60	Autoimmune retinopathy and optic neuropathy associated with enolase-positive renal oncocytoma. American Journal of Ophthalmology Case Reports, 2018, 12, 55-60.	0.7	7
61	Imidazole Compounds for Protecting Choroidal Endothelial Cells from Complement Injury. Scientific Reports, 2018, 8, 13387.	3.3	7
62	Effect of Molecular Weight and Functionality on Acrylated Poly(caprolactone) for Stereolithography and Biomedical Applications. Biomacromolecules, 2018, 19, 3682-3692.	5.4	51
63	Evaluation of serum and ocular levels of membrane attack complex and C-reactive protein in CFH-genotyped human donors. Eye, 2018, 32, 1740-1742.	2.1	14
64	Histochemical Analysis of Glaucoma Caused by a Myocilin Mutation in a Human Donor Eye. Ophthalmology Glaucoma, 2018, 1, 132-138.	1.9	11
65	Human Retinal Engineering using 3D PCL Scaffolds. FASEB Journal, 2018, 32, 816.12.	0.5	0
66	Transgenic <i>TBK1</i> mice have features of normal tension glaucoma. Human Molecular Genetics, 2017, 26, ddw372.	2.9	19
67	Bestrophinopathy: An RPE-photoreceptor interface disease. Progress in Retinal and Eye Research, 2017, 58, 70-88.	15.5	85
68	Connective Tissue Growth Factor Promotes Efficient Generation of Human Induced Pluripotent Stem Cell-Derived Choroidal Endothelium. Stem Cells Translational Medicine, 2017, 6, 1533-1546.	3.3	30
69	Preparation and evaluation of human choroid extracellular matrix scaffolds for the study of cell replacement strategies. Acta Biomaterialia, 2017, 57, 293-303.	8.3	19
70	From compliment to insult: genetics of the complement system in physiology and disease in the human retina. Human Molecular Genetics, 2017, 26, R51-R57.	2.9	14
71	Clinically Focused Molecular Investigation of 1000 Consecutive Families with Inherited Retinal Disease. Ophthalmology, 2017, 124, 1314-1331.	5.2	312
72	Using CRISPR-Cas9 to Generate Gene-Corrected Autologous iPSCs for the Treatment of Inherited Retinal Degeneration. Molecular Therapy, 2017, 25, 1999-2013.	8.2	121

#	Article	IF	CITATIONS
73	Patient-specific induced pluripotent stem cells to evaluate the pathophysiology of TRNT1 -associated Retinitis pigmentosa. Stem Cell Research, 2017, 21, 58-70.	0.7	45
74	Two-photon polymerization for production of human iPSC-derived retinal cell grafts. Acta Biomaterialia, 2017, 55, 385-395.	8.3	76
75	Choroidal $\hat{I}^3\hat{I}$ T cells in protection against retinal pigment epithelium and retinal injury. FASEB Journal, 2017, 31, 4903-4916.	0.5	19
76	CLINICOPATHOLOGICAL CORRELATION IN A PATIENT WITH PREVIOUSLY TREATED BIRDSHOT CHORIORETINOPATHY. Retinal Cases and Brief Reports, 2017, 11, 344-347.	0.6	10
77	Generation of Xenoâ€Free, cGMPâ€Compliant Patientâ€Specific iPSCs from Skin Biopsy. Current Protocols in Stem Cell Biology, 2017, 42, 4A.12.1-4A.12.14.	3.0	15
78	Structural and molecular changes in the aging choroid: implications for age-related macular degeneration. Eye, 2017, 31, 10-25.	2.1	146
79	Drusen on Demand? Authors Describe a Novel Culture System for Generating subRPE Deposits. , 2017, 58, 720.		1
80	A Method for Sectioning and Immunohistochemical Analysis of Stem Cell–Derived 3â€D Organoids. Current Protocols in Stem Cell Biology, 2016, 37, 1C.19.1-1C.19.11.	3.0	11
81	Association of reduced Connexin 43 expression with retinal vascular lesions in human diabetic retinopathy. Experimental Eye Research, 2016, 146, 103-106.	2.6	25
82	Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2655-64.	7.1	442
83	Monomeric C-reactive protein and inflammation in age-related macular degeneration. Journal of Pathology, 2016, 240, 173-183.	4.5	43
84	Using Patient-Specific Induced Pluripotent Stem Cells and Wild-Type Mice to Develop a Gene Augmentation-Based Strategy to Treat <i>CLN3</i> -Associated Retinal Degeneration. Human Gene Therapy, 2016, 27, 835-846.	2.7	29
85	West Nile Virus Infection in Human and Mouse Cornea Tissue. American Journal of Tropical Medicine and Hygiene, 2016, 95, 1185-1191.	1.4	4
86	cGMP production of patient-specific iPSCs and photoreceptor precursor cells to treat retinal degenerative blindness. Scientific Reports, 2016, 6, 30742.	3.3	108
87	Selective accumulation of the complement membrane attack complex in aging choriocapillaris. Experimental Eye Research, 2016, 146, 393-397.	2.6	51
88	North Carolina Macular Dystrophy Is Caused by Dysregulation of the Retinal Transcription Factor PRDM13. Ophthalmology, 2016, 123, 9-18.	5.2	105
89	Prevascularized silicon membranes for the enhancement of transport to implanted medical devices. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 1602-1609.	3.4	3
90	Molecular response of chorioretinal endothelial cells to complement injury: implications for macular degeneration. Journal of Pathology, 2016, 238, 446-456.	4.5	47

#	Article	IF	CITATIONS
91	Concise Review: Patient-Specific Stem Cells to Interrogate Inherited Eye Disease. Stem Cells Translational Medicine, 2016, 5, 132-140.	3.3	19
92	Hypomorphic mutations in <i>TRNT1 </i> cause retinitis pigmentosa with erythrocytic microcytosis. Human Molecular Genetics, 2016, 25, 44-56.	2.9	64
93	Mouse Tmem 135 mutation reveals a mechanism involving mitochondrial dynamics that leads to age-dependent retinal pathologies. ELife, 2016, 5, .	6.0	38
94	MMP19 expression in the human optic nerve. Molecular Vision, 2016, 22, 1429-1436.	1.1	3
95	Using patient-specific induced pluripotent stem cells to interrogate the pathogenicity of a novel retinal pigment epithelium-specific 65ÅkDa cryptic splice site mutation and confirm eligibility for enrollment into a clinical gene augmentation trial. Translational Research, 2015, 166, 740-749.e1.	5.0	30
96	Allogenic iPSC-derived RPE cell transplants induce immune response in pigs: a pilot study. Scientific Reports, 2015, 5, 11791.	3.3	48
97	REFRACTILE DRUSEN. Retina, 2015, 35, 859-865.	1.7	50
98	Heterozygous Triplication of Upstream Regulatory Sequences Leads to Dysregulation of Matrix Metalloproteinase 19 in Patients with Cavitary Optic Disc Anomaly. Human Mutation, 2015, 36, 369-378.	2.5	10
99	Effect of Internal Limiting Membrane Abrasion on Retinal Tissues in Macular Holes. , 2015, 56, 2783.		17
100	Generating iPSC-Derived Choroidal Endothelial Cells to Study Age-Related Macular Degeneration. , 2015, 56, 8258.		36
101	Validity of Automated Choroidal Segmentation in SS-OCT and SD-OCT. , 2015, 56, 3202.		74
102	Characterization of Choroidal Layers in Normal Aging Eyes Using Enface Swept-Source Optical Coherence Tomography. PLoS ONE, 2015, 10, e0133080.	2.5	51
103	Regional Assessment of Energy-Producing Metabolic Activity in the Endothelium of Donor Corneas. , 2015, 56, 2803.		18
104	Comparison of Retinal and Choriocapillaris Thicknesses Following Sitting to Supine Transition in Healthy Individuals and Patients With Age-Related Macular Degeneration. JAMA Ophthalmology, 2015, 133, 297.	2.5	33
105	Complement activation and choriocapillaris loss in early AMD: Implications for pathophysiology and therapy. Progress in Retinal and Eye Research, 2015, 45, 1-29.	15.5	189
106	Stem Cells as Tools for Studying the Genetics of Inherited Retinal Degenerations. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a017160-a017160.	6.2	11
107	COMPARISON OF DRUSEN AND MODIFYING GENES IN AUTOSOMAL DOMINANT RADIAL DRUSEN AND AGE-RELATED MACULAR DEGENERATION. Retina, 2015, 35, 48-57.	1.7	34
108	Immunosuppressive Treatment for Retinal Degeneration in Juvenile Neuronal Ceroid Lipofuscinosis (Juvenile Batten Disease). Ophthalmic Genetics, 2015, 36, 359-364.	1.2	14

#	Article	IF	CITATIONS
109	Vitritis in Pediatric Genetic Retinal Disorders. Ophthalmology, 2015, 122, 192-199.	5.2	8
110	Patient-specific induced pluripotent stem cells (iPSCs) for the study and treatment of retinal degenerative diseases. Progress in Retinal and Eye Research, 2015, 44, 15-35.	15.5	108
111	Gene Therapy Using Stem Cells. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a017434-a017434.	6.2	16
112	Structural and Biochemical Analyses of Choroidal Thickness in Human Donor Eyes. , 2014, 55, 1352.		77
113	Loss of CD34 Expression in Aging Human Choriocapillaris Endothelial Cells. PLoS ONE, 2014, 9, e86538.	2.5	23
114	Transcriptomic analysis across nasal, temporal, and macular regions of human neural retina and RPE/choroid by RNA-Seq. Experimental Eye Research, 2014, 129, 93-106.	2.6	122
115	A Mutation in the Mouse Ttc26 Gene Leads to Impaired Hedgehog Signaling. PLoS Genetics, 2014, 10, e1004689.	3.5	26
116	<i>TBK1</i> and Flanking Genes in Human Retina. Ophthalmic Genetics, 2014, 35, 35-40.	1.2	17
117	Cadherin 5 is Regulated by Corticosteroids and Associated with Central Serous Chorioretinopathy. Human Mutation, 2014, 35, 859-867.	2.5	107
118	$Fc\hat{l}^3$ Receptor Upregulation Is Associated With Immune Complex Inflammation in the Mouse Retina and Early Age-Related Macular Degeneration. , 2014, 55, 247.		38
119	Photoreceptor Cells With Profound Structural Deficits Can Support Useful Vision in Mice. , 2014, 55, 1859.		15
120	Is Age-Related Macular Degeneration a Microvascular Disease?. Advances in Experimental Medicine and Biology, 2014, 801, 283-289.	1.6	25
121	Duplication of TBK1 Stimulates Autophagy in iPSC-derived Retinal Cells from a Patient with Normal Tension Glaucoma. Journal of Stem Cell Research & Therapy, 2014, 04, 161.	0.3	7 5
122	Outer Segment Length in Different Best Disease Genotypes. JAMA Ophthalmology, 2014, 132, 1152.	2.5	3
123	The Membrane Attack Complex in Aging Human Choriocapillaris. American Journal of Pathology, 2014, 184, 3142-3153.	3.8	174
124	Stem cells for investigation and treatment of inherited retinal disease. Human Molecular Genetics, 2014, 23, R9-R16.	2.9	59
125	CEP290 gene transfer rescues Leber congenital amaurosis cellular phenotype. Gene Therapy, 2014, 21, 662-672.	4.5	118
126	Mechanical properties of murine and porcine ocular tissues in compression. Experimental Eye Research, 2014, 121, 194-199.	2.6	51

#	Article	IF	Citations
127	Interleukin-17 Retinotoxicity Is Prevented by Gene Transfer of a Soluble Interleukin-17 Receptor Acting as a Cytokine Blocker: Implications for Age-Related Macular Degeneration. PLoS ONE, 2014, 9, e95900.	2.5	41
128	Prioritization of Retinal Disease Genes: An Integrative Approach. Human Mutation, 2013, 34, 853-859.	2.5	7
129	Macular Dystrophies. , 2013, , 852-890.		7
130	Lipofuscin in human glaucomatous optic nerves. Experimental Eye Research, 2013, 111, 61-66.	2.6	10
131	Exon-level expression profiling of ocular tissues. Experimental Eye Research, 2013, 111, 105-111.	2.6	94
132	Non-exomic and synonymous variants in ABCA4 are an important cause of Stargardt disease. Human Molecular Genetics, 2013, 22, 5136-5145.	2.9	159
133	Use of a Synthetic Xeno-Free Culture Substrate for Induced Pluripotent Stem Cell Induction and Retinal Differentiation. Stem Cells Translational Medicine, 2013, 2, 16-24.	3.3	89
134	Selection of Phototransduction Genes in <i>Homo sapiens </i> ., 2013, 54, 5489.		1
135	Patient-specific iPSC-derived photoreceptor precursor cells as a means to investigate retinitis pigmentosa. ELife, 2013, 2, e00824.	6.0	168
136	Human Photoreceptor Outer Segments Shorten During Light Adaptation., 2013, 54, 3721.		63
137	Subretinal Gene Therapy of Mice With Bardet-Biedl Syndrome Type 1., 2013, 54, 6118.		79
138	Altered gene expression in dry age-related macular degeneration suggests early loss of choroidal endothelial cells. Molecular Vision, 2013, 19, 2274-97.	1.1	47
139	Three-dimensional Distribution of the Vitelliform Lesion, Photoreceptors, and Retinal Pigment Epithelium in the Macula of Patients With Best Vitelliform Macular Dystrophy. JAMA Ophthalmology, 2012, 130, 357.	2.4	54
140	Automated Segmentation of the Choroid from Clinical SD-OCT. , 2012, 53, 7510.		128
141	Autosomal Recessive Retinitis Pigmentosa Due To <i>ABCA4</i> Mutations: Clinical, Pathologic, and Molecular Characterization., 2012, 53, 1883.		45
142	Effects of Antioxidant Components of AREDS Vitamins and Zinc Ions on Endothelial Cell Activation: Implications for Macular Degeneration., 2012, 53, 1041.		29
143	Time-Resolved Autofluorescence Imaging of Human Donor Retina Tissue from Donors with Significant Extramacular Drusen., 2012, 53, 3376.		52
144	Molecular responses of choroidal endothelial cells to elastin derived peptides through the elastin-binding protein (GLB1). Matrix Biology, 2012, 31, 113-119.	3.6	28

#	Article	IF	CITATIONS
145	TUDCA Slows Retinal Degeneration in Two Different Mouse Models of Retinitis Pigmentosa and Prevents Obesity in Bardet-Biedl Syndrome Type 1 Mice., 2012, 53, 100.		84
146	Transcriptome changes in age-related macular degeneration. BMC Medicine, 2012, 10, 21.	5.5	6
147	Localization of SH3PXD2B in human eyes and detection of rare variants in patients with anterior segment diseases and glaucoma. Molecular Vision, 2012, 18, 705-13.	1.1	8
148	Elevated membrane attack complex in human choroid with high risk complement factor H genotypes. Experimental Eye Research, 2011, 93, 565-567.	2.6	112
149	AUTOSOMAL RECESSIVE VITELLIFORM MACULAR DYSTROPHY IN A LARGE COHORT OF VITELLIFORM MACULAR DYSTROPHY PATIENTS. Retina, 2011, 31, 581-595.	1.7	75
150	Variations in NPHP5 in Patients With Nonsyndromic Leber Congenital Amaurosis and Senior-Loken Syndrome. JAMA Ophthalmology, 2011, 129, 81.	2.4	62
151	Seroreactivity Against Aqueous-Soluble and Detergent-Soluble Retinal Proteins in Posterior Uveitis. JAMA Ophthalmology, 2011, 129, 415.	2.4	18
152	Evaluation of variants in the selectin genes in age-related macular degeneration. BMC Medical Genetics, 2011, 12, 58.	2.1	15
153	T-cell immunoglobulin and mucin domain 1 (TIM-1) is a receptor for <i>Zaire Ebolavirus</i> and <i>Lake Victoria Marburgvirus</i> Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8426-8431.	7.1	330
154	Different Inner Retinal Pathways Mediate Rod-Cone Input in Irradiance Detection for the Pupillary Light Reflex and Regulation of Behavioral State in Mice., 2011, 52, 618.		17
155	Choriocapillaris Vascular Dropout Related to Density of Drusen in Human Eyes with Early Age-Related Macular Degeneration. , 2011, 52, 1606.		323
156	Copy number variations on chromosome 12q14 in patients with normal tension glaucoma. Human Molecular Genetics, 2011, 20, 2482-2494.	2.9	189
157	Exome sequencing and analysis of induced pluripotent stem cells identify the cilia-related gene <i>male germ cell-associated kinase</i> (<i>MAK</i>) as a cause of retinitis pigmentosa. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E569-76.	7.1	186
158	Chromosome 7q31 POAG locus: ocular expression of caveolins and lack of association with POAG in a US cohort. Molecular Vision, 2011, 17, 430-5.	1.1	41
159	Angiogenin in age-related macular degeneration. Molecular Vision, 2011, 17, 576-82.	1.1	16
160	Anti–γ-Enolase Autoimmune Retinopathy Manifesting in Early Childhood. JAMA Ophthalmology, 2010, 128, 1590.	2.4	7
161	Complement Component C5a Activates ICAM-1 Expression on Human Choroidal Endothelial Cells. , 2010, 51, 5336.		101
162	Identification and Functional Analysis of the Vision-Specific BBS3 (ARL6) Long Isoform. PLoS Genetics, 2010, 6, e1000884.	3 . 5	75

#	Article	IF	Citations
163	Essentials of Retinal Morphology. Neuromethods, 2010, , 1-11.	0.3	2
164	T-cell infiltration in autosomal dominant neovascular inflammatory vitreoretinopathy. Molecular Vision, 2010, 16, 1034-40.	1.1	13
165	Visual Impairment in the Absence of Dystroglycan. Journal of Neuroscience, 2009, 29, 13136-13146.	3.6	56
166	Predicting the pathogenicity of <i>RPE65 </i> human Mutation, 2009, 30, 1183-1188.	2.5	40
167	Macrophages in neovascular age-related macular degeneration: friends or foes?. Eye, 2009, 23, 747-755.	2.1	72
168	Localization of complement 1 inhibitor (C1INH/SERPING1) in human eyes with age-related macular degeneration. Experimental Eye Research, 2009, 89, 767-773.	2.6	27
169	Association between the SERPING1 gene and age-related macular degeneration: a two-stage case–control study. Lancet, The, 2008, 372, 1828-1834.	13.7	156
170	Elastin-Mediated Choroidal Endothelial Cell Migration: Possible Role in Age-Related Macular Degeneration., 2008, 49, 5574.		34
171	Comparison of the Femtosecond Laser (IntraLase) Versus Manual Microkeratome (Moria ALTK) in Dissection of the Donor in Endothelial Keratoplasty. Cornea, 2008, 27, 88-93.	1.7	85
172	Divergent Phenotypes of Vision and Accessory Visual Function in Mice with Visual Cycle Dysfunction (Rpe65rd12) or Retinal Degeneration (rd/rd)., 2008, 49, 2737.		14
173	Bestrophin Gene Mutations Cause Canine Multifocal Retinopathy: A Novel Animal Model for Best Disease. , 2007, 48, 1959.		108
174	A knockin mouse model of the Bardet–Biedl syndrome 1 M390R mutation has cilia defects, ventriculomegaly, retinopathy, and obesity. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19422-19427.	7.1	237
175	Generation, identification and functional characterization of thenob4mutation ofGrm6in the mouse. Visual Neuroscience, 2007, 24, 111-123.	1.0	61
176	Genetic Insights Into the Pathobiology of Age-related Macular Degeneration. International Ophthalmology Clinics, 2007, 47, 1-14.	0.7	18
177	Autosomal Dominant Early Onset Aponeurotic Ptosis and Corneal Limbal Vascularization in a Three-generation Family. Ophthalmic Plastic and Reconstructive Surgery, 2007, 23, 484-486.	0.8	0
178	Fibulin-5 distribution in human eyes: Relevance to age-related macular degeneration. Experimental Eye Research, 2007, 84, 378-380.	2.6	38
179	Enhanced accumulation of A2E in individuals homozygous or heterozygous for mutations in BEST1 (VMD2). Experimental Eye Research, 2007, 85, 34-43.	2.6	90
180	Differential Macular and Peripheral Expression of Bestrophin in Human Eyes and Its Implication for Best Disease., 2007, 48, 3372.		109

#	Article	IF	Citations
181	Gene Expression Analysis of Photoreceptor Cell Loss inBbs4-Knockout Mice Reveals an Early Stress Gene Response and Photoreceptor Cell Damage. , 2007, 48, 3329.		57
182	Development and characterization of photopolymerizable biodegradable materials from PEG–PLA–PEG block macromonomers. Polymer, 2007, 48, 6554-6564.	3.8	75
183	Identical mutation in a novel retinal gene causes progressive rod–cone degeneration in dogs and retinitis pigmentosa in humans. Genomics, 2006, 88, 551-563.	2.9	161
184	Ethnic variation in AMD-associated complement factor H polymorphism p.Tyr402His. Human Mutation, 2006, 27, 921-925.	2.5	66
185	Bardet–Biedl syndrome genes are important in retrograde intracellular trafficking and Kupffer's vesicle cilia function. Human Molecular Genetics, 2006, 15, 667-677.	2.9	176
186	Macular and peripheral distribution of ICAM-1 in the human choriocapillaris and retina. Molecular Vision, 2006, 12, 224-35.	1.1	50
187	Late Development of Vitelliform Lesions and Flecks in a Patient With Best Disease. JAMA Ophthalmology, 2005, 123, 1588.	2.4	95
188	Association of HLA Class I and Class II Polymorphisms with Age-Related Macular Degeneration. , 2005, 46, 1726.		64
189	Mkks-null mice have a phenotype resembling Bardet–Biedl syndrome. Human Molecular Genetics, 2005, 14, 1109-1118.	2.9	181
190	Generation, characterization, and molecular cloning of the <i>Noerg-1</i> house. Visual Neuroscience, 2005, 22, 619-629.	1.0	21
191	Decreased Thickness and Integrity of the Macular Elastic Layer of Bruch's Membrane Correspond to the Distribution of Lesions Associated with Age-Related Macular Degeneration. American Journal of Pathology, 2005, 166, 241-251.	3.8	185
192	Glycoconjugates of choroidal neovascular membranes in age-related macular degeneration. Molecular Vision, 2005, 11, 509-17.	1.1	16
193	<i>Bbs2</i> -null mice have neurosensory deficits, a defect in social dominance, and retinopathy associated with mislocalization of rhodopsin. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16588-16593.	7.1	345
194	Bardet–Biedl syndrome type 4 (BBS4)-null mice implicate Bbs4 in flagella formation but not global cilia assembly. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8664-8669.	7.1	309
195	Results from screening over 9000 mutation-bearing mice for defects in the electroretinogram and appearance of the fundus. Vision Research, 2004, 44, 3335-3345.	1.4	23
196	Comparison of color to fluorescein angiographic images from patients with early-adult onset grouped drusen suggests drusen substructure. American Journal of Ophthalmology, 2004, 137, 924-930.	3.3	18
197	Adeno-Associated Virus Type 5: Transduction Efficiency and Cell-Type Specificity in the Primate Retina. Human Gene Therapy, 2003, 14, 1663-1671.	2.7	95
198	Gene Transfer to the Nonhuman Primate Retina with Recombinant Feline Immunodeficiency Virus Vectors. Human Gene Therapy, 2002, 13, 689-696.	2.7	48

#	Article	IF	Citations
199	A role for local inflammation in the formation of drusen in the aging eye. American Journal of Ophthalmology, 2002, 134, 411-431.	3.3	986
200	Local cellular sources of apolipoprotein E in the human retina and retinal pigmented epithelium: implications for the process of drusen formation. American Journal of Ophthalmology, 2001, 131, 767-781.	3.3	229
201	An Integrated Hypothesis That Considers Drusen as Biomarkers of Immune-Mediated Processes at the RPE-Bruch's Membrane Interface in Aging and Age-Related Macular Degeneration. Progress in Retinal and Eye Research, 2001, 20, 705-732.	15.5	1,162
202	Expression of the glaucoma gene myocilin (MYOC) in the human optic nerve head. FASEB Journal, 2001, 15, 1251-1253.	0.5	46
203	Structure and composition of drusen associated with glomerulonephritis: Implications for the role of complement activation in drusen biogenesis. Eye, 2001, 15, 390-395.	2.1	214
204	Drusen associated with aging and ageâ€related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. FASEB Journal, 2000, 14, 835-846.	0.5	833
205	Location, substructure, and composition of basal laminar drusen compared with drusen associated with aging and age-related macular degeneration. American Journal of Ophthalmology, 2000, 129, 205-214.	3.3	157
206	Vitronectin is a constituent of ocular drusen and the vitronectin gene is expressed in human retinal pigmented epithelial cells. FASEB Journal, 1999, 13, 477-484.	0.5	183
207	Human Ocular Drusen Possess Novel Core Domains with a Distinct Carbohydrate Composition. Journal of Histochemistry and Cytochemistry, 1999, 47, 1533-1539.	2.5	55
208	The Human Retina and Retinal Pigment Epithelium Are Abundant Sources of Vitronectin mRNA. Biochemical and Biophysical Research Communications, 1999, 258, 524-529.	2.1	28
209	Characterization of Drusen-associated Glycoconjugates. Ophthalmology, 1997, 104, 288-294.	5.2	63
210	Histochemical Comparison of Ocular "Drusen―in Monkey and Human. , 1997, , 1-10.		6
211	Expression of the retina-specific flippase, ABCA4, in epidermal keratinocytes. F1000Research, 0, 5, 193.	1.6	3