
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4791906/publications.pdf Version: 2024-02-01

Ιμινιλλμ

#	Article	IF	CITATIONS
1	The time and spatial effects of bystander response in mammalian cells induced by low dose radiation. Carcinogenesis, 2006, 27, 245-251.	2.8	139
2	Antagonistic effects of volatiles generated by Bacillus subtilis on spore germination and hyphal growth of the plant pathogen, Botrytis cinerea. Biotechnology Letters, 2008, 30, 919-923.	2.2	124
3	ROS/Autophagy/Nrf2 Pathway Mediated Low-Dose Radiation Induced Radio-Resistance in Human Lung Adenocarcinoma A549 Cell. International Journal of Biological Sciences, 2015, 11, 833-844.	6.4	82
4	Effects of arbuscular mycorrhizal fungi on the growth, nutrient uptake and glycyrrhizin production of licorice (Glycyrrhiza uralensis Fisch). Plant Growth Regulation, 2007, 52, 29-39.	3.4	73
5	Up-regulation of ROS by mitochondria-dependent bystander signaling contributes to genotoxicity of bystander effects. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2009, 666, 68-73.	1.0	67
6	Selection of DNA aptamers against polychlorinated biphenyls as potential biorecognition elements for environmental analysis. Analytical Biochemistry, 2012, 423, 195-201.	2.4	66
7	Mechanisms involved in the impact of engineered nanomaterials on the joint toxicity with environmental pollutants. Ecotoxicology and Environmental Safety, 2018, 162, 92-102.	6.0	66
8	Insights into the Ecotoxicity of Silver Nanoparticles Transferred from Escherichia coli to Caenorhabditis elegans. Scientific Reports, 2016, 6, 36465.	3.3	62
9	Induction of Germline Cell Cycle Arrest and Apoptosis by Sodium Arsenite in Caenorhabditis elegans. Chemical Research in Toxicology, 2007, 20, 181-186.	3.3	58
10	Evolved Bacterial Biosensor for Arsenite Detection in Environmental Water. Environmental Science & Technology, 2015, 49, 6149-6155.	10.0	52
11	Label-free selective SERS detection of PCB-77 based on DNA aptamer modified SiO2@Au core/shell nanoparticles. Analyst, The, 2014, 139, 3083.	3.5	50
12	Graphene Oxide Attenuates the Cytotoxicity and Mutagenicity of PCB 52 via Activation of Genuine Autophagy. Environmental Science & Technology, 2016, 50, 3154-3164.	10.0	48
13	Reproductive Toxicity of Endosulfan: Implication From Germ Cell Apoptosis Modulated by Mitochondrial Dysfunction and Genotoxic Response Genes in <i>Caenorhabditis elegans</i> . Toxicological Sciences, 2015, 145, 118-127.	3.1	45
14	In SituVisualization of DSBs to Assess the Extranuclear/Extracellular Effects Induced by Low-Dose α-Particle Irradiation. Radiation Research, 2005, 164, 286-291.	1.5	43
15	Perfluorooctane sulfonate exposure causes gonadal developmental toxicity in Caenorhabditis elegans through ROS-induced DNA damage. Chemosphere, 2016, 155, 115-126.	8.2	41
16	Mutagenicity of PFOA in Mammalian Cells: Role of Mitochondria-Dependent Reactive Oxygen Species. Environmental Science & Technology, 2011, 45, 1638-1644.	10.0	40
17	Radiation induces apoptosis primarily through the intrinsic pathway in mammalian cells. Cellular Signalling, 2019, 62, 109337.	3.6	38
18	Effect of ionic strength on bioaccumulation and toxicity of silver nanoparticles in Caenorhabditis elegans. Ecotoxicology and Environmental Safety, 2018, 165, 291-298.	6.0	37

#	Article	IF	CITATIONS
19	Spectroscopic probe to contribution of physicochemical transformations in the toxicity of aged ZnO NPs to <i>Chlorella vulgaris</i> : new insight into the variation of toxicity of ZnO NPs under aging process. Nanotoxicology, 2016, 10, 1177-1187.	3.0	35
20	Dual-emissive fluorescence measurements of hydroxyl radicals using a coumarin-activated silica nanohybrid probe. Analyst, The, 2016, 141, 2296-2302.	3.5	34
21	Effects of ionic strength on physicochemical properties and toxicity of silver nanoparticles. Science of the Total Environment, 2019, 647, 1088-1096.	8.0	33
22	Activated Toxicity of Diesel Particulate Extract by Ultraviolet A Radiation in Mammalian Cells: Role of Singlet Oxygen. Environmental Health Perspectives, 2009, 117, 436-441.	6.0	32
23	Survival of mammalian cells under high vacuum condition for ion bombardment. Cryobiology, 2004, 49, 241-249.	0.7	29
24	Exogenous carbon monoxide protects the bystander Chinese hamster ovary cells in mixed coculture system after alpha-particle irradiation. Carcinogenesis, 2010, 31, 275-280.	2.8	29
25	PFOS-induced apoptosis through mitochondrion-dependent pathway in human–hamster hybrid cells. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2013, 754, 51-57.	1.7	29
26	TiO2 nanoparticles enhance bioaccumulation and toxicity of heavy metals in Caenorhabditis elegans via modification of local concentrations during the sedimentation process. Ecotoxicology and Environmental Safety, 2018, 162, 160-169.	6.0	29
27	Chloride-induced shape transformation of silver nanoparticles in a water environment. Environmental Pollution, 2015, 204, 145-151.	7.5	27
28	Molecular control of arsenite-induced apoptosis in Caenorhabditis elegans: Roles of insulin-like growth factor-1 signaling pathway. Chemosphere, 2014, 112, 248-255.	8.2	26
29	The Time Course of Long-Distance Signaling in Radiation-Induced Bystander Effect <i>In Vivo</i> in <i>Arabidopsis thaliana</i> Demonstrated Using Root Micro-Grafting. Radiation Research, 2011, 176, 234-243.	1.5	25
30	A novel method for assessing the toxicity of silver nanoparticles in Caenorhabditis elegans. Chemosphere, 2017, 168, 648-657.	8.2	24
31	Amplification of arsenic genotoxicity by TiO ₂ nanoparticles in mammalian cells: new insights from physicochemical interactions and mitochondria. Nanotoxicology, 2017, 11, 978-995.	3.0	23
32	N-(3-oxo-acyl) homoserine lactone induced germ cell apoptosis and suppressed the over-activated RAS/MAPK tumorigenesis via mitochondrial-dependent ROS in C. elegans. Apoptosis: an International Journal on Programmed Cell Death, 2018, 23, 626-640.	4.9	21
33	Affinity maturation of anti-TNF-alpha scFv with somatic hypermutation in non-B cells. Protein and Cell, 2012, 3, 460-469.	11.0	20
34	An oxidative cleavage-based ratiometric fluorescent probe for hypochlorous acid detection and imaging. RSC Advances, 2014, 4, 59961-59964.	3.6	20
35	Role of nitric oxide in the genotoxic response to chronic microcystin-LR exposure in human–hamster hybrid cells. Journal of Environmental Sciences, 2015, 29, 210-218.	6.1	19
36	Mapping Quantitative Trait Loci for 1000-Grain Weight in a Double Haploid Population of Common Wheat. International Journal of Molecular Sciences, 2020, 21, 3960.	4.1	19

#	Article	IF	CITATIONS
37	Subcellular Targets of Zinc Oxide Nanoparticles During the Aging Process: Role of Cross-talk Between Mitochondrial Dysfunction and Endoplasmic Reticulum Stress in the Genotoxic Response. Toxicological Sciences, 2019, 171, 159-171.	3.1	18
38	Introduction of rice chitinase gene into wheat via low energy Ar+ beam implantation. Science Bulletin, 2001, 46, 318-322.	1.7	17
39	Graphene oxide regulates <i>cox2</i> in human embryonic kidney 293T cells via epigenetic mechanisms: dynamic chromosomal interactions. Nanotoxicology, 2018, 12, 117-137.	3.0	16
40	Graphene oxide antagonizes the toxic response to arsenic <i>via</i> activation of protective autophagy and suppression of the arsenic-binding protein LEC-1 in <i>Caenorhabditis elegans</i> . Environmental Science: Nano, 2018, 5, 1711-1728.	4.3	16
41	Parental exposure to TiO ₂ NPs promotes the multigenerational reproductive toxicity of Cd in <i>Caenorhabditis elegans via</i> bioaccumulation of Cd in germ cells. Environmental Science: Nano, 2019, 6, 1332-1342.	4.3	16
42	Silver nanoparticle-activated COX2/PGE2 axis involves alteration of lung cellular senescence in vitro and in vivo. Ecotoxicology and Environmental Safety, 2020, 204, 111070.	6.0	16
43	Disruption of Chromosomal Architecture of cox2 Locus Sensitizes Lung Cancer Cells to Radiotherapy. Molecular Therapy, 2018, 26, 2456-2465.	8.2	15
44	Interaction between Radioadaptive Response and Radiation-Induced Bystander Effect in Caenorhabditis elegans: A Unique Role of the DNA Damage Checkpoint. Radiation Research, 2016, 186, 662.	1.5	14
45	The melatonin-MT1 receptor axis modulates tumor growth in PTEN-mutated gliomas. Biochemical and Biophysical Research Communications, 2018, 496, 1322-1330.	2.1	14
46	Antagonizing CDK8 Sensitizes Colorectal Cancer to Radiation Through Potentiating the Transcription of e2f1 Target Gene apaf1. Frontiers in Cell and Developmental Biology, 2020, 8, 408.	3.7	14
47	Elevated sodium chloride concentrations enhance the bystander effects induced by low dose alpha-particle irradiation. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2007, 624, 124-131.	1.0	13
48	Abscopal Signals Mediated Bio-Effects in Low-Energy Ion Irradiated Medicago truncatula Seeds. Journal of Radiation Research, 2010, 51, 651-656.	1.6	13
49	Highly photostable and biocompatible graphene oxides with amino acid functionalities. Journal of Materials Chemistry C, 2014, 2, 7126.	5.5	13
50	Impact of Bacillus subtilis JA, a biocontrol strain of fungal plant pathogens, on arbuscular mycorrhiza formation in Zea mays. World Journal of Microbiology and Biotechnology, 2008, 24, 1133-1137.	3.6	12
51	Downregulation of CDC20 Increases Radiosensitivity through Mcl-1/p-Chk1-Mediated DNA Damage and Apoptosis in Tumor Cells. International Journal of Molecular Sciences, 2020, 21, 6692.	4.1	12
52	DNA damage-induced translocation of mitochondrial factor HIGD1A into the nucleus regulates homologous recombination and radio/chemo-sensitivity. Oncogene, 2022, 41, 1918-1930.	5.9	12
53	Mutagenic effect of a keV range N+ beam on mammalian cells. Nuclear Instruments & Methods in Physics Research B, 2005, 234, 477-486.	1.4	11
54	Utilizing low-energy ion beams to study living organisms. Surface and Coatings Technology, 2007, 201, 8034-8038.	4.8	11

#	Article	IF	CITATIONS
55	A pivotal role of the jasmonic acid signal pathway in mediating radiation-induced bystander effects in Arabidopsis thaliana. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2016, 791-792, 1-9.	1.0	11
56	Effect of modeled microgravity on radiation-induced adaptive response of root growth in Arabidopsis thaliana. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2017, 796, 20-28.	1.0	11
57	A potential involvement of plant systemic response in initiating genotoxicity of Ag-nanoparticles in Arabidopsis thaliana. Ecotoxicology and Environmental Safety, 2019, 170, 324-330.	6.0	11
58	Surface Structures and Osteoblast Activity on Biomedical Polytetrafluoroethylene Treated by Longâ€Pulse, Highâ€Frequency Oxygen Plasma Immersion Ion Implantation. Advanced Engineering Materials, 2010, 12, B163.	3.5	10
59	Comparative transcriptome analysis of two selenium-accumulating genotypes of Aegilops tauschii Coss. in response to selenium. BMC Genetics, 2019, 20, 9.	2.7	10
60	Pan-Cancer Analysis of Radiotherapy Benefits and Immune Infiltration in Multiple Human Cancers. Cancers, 2020, 12, 957.	3.7	10
61	Ceramide mediates radiation-induced germ cell apoptosis via regulating mitochondria function and MAPK factors in Caenorhabditis elegans. Ecotoxicology and Environmental Safety, 2021, 208, 111579.	6.0	10
62	Development of the CAS-LIBB single-particle microbeam for localized irradiation of living cells. Science Bulletin, 2004, 49, 1806-1811.	1.7	9
63	Radiation-induced bystander effects enhanced by elevated sodium chloride through sensitizing cells to bystander factors. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2008, 644, 43-47.	1.0	9
64	Radioadaptive Response for Reproductive Cell Death Demonstrated in In Vivo Tissue Model of Caenorhabditis elegans. Radiation Research, 2016, 185, 402.	1.5	9
65	Monitoring arsenic using genetically encoded biosensors in vitro: The role of evolved regulatory genes. Ecotoxicology and Environmental Safety, 2021, 207, 111273.	6.0	9
66	Spatial function of the oxidative DNA damage response in radiation induced bystander effects in intra- and inter-system of <i>Caenorhabditis elegans</i> . Oncotarget, 2017, 8, 51253-51263.	1.8	9
67	Effects induced by keV low-energy ion irradiation in the nematode Caenorhabditis elegans. Radiation and Environmental Biophysics, 2007, 46, 255-261.	1.4	8
68	Fluorescent G-quadruplex–NMM DNA probe for the detection of silver nanoparticles in aqueous media. Analytical Methods, 2015, 7, 1672-1675.	2.7	8
69	Mutagenic Effects of Perfluorooctanesulfonic Acid in <i>gpt</i> Delta Transgenic System Are Mediated by Hydrogen Peroxide. Environmental Science & Technology, 2015, 49, 6294-6303.	10.0	8
70	Autophagy-Src Regulates Connexin43-Mediated Gap Junction Intercellular Communication in Irradiated HepG2 Cells. Radiation Research, 2018, 190, 494.	1.5	8
71	dbCRSR: a manually curated database for regulation of cancer radiosensitivity. Database: the Journal of Biological Databases and Curation, 2018, 2018, .	3.0	8
72	Ecotoxicity Risk of Low-Dose Methylmercury Exposure to <i>Caenorhabditis elegans</i> : Multigenerational Toxicity and Population Discrepancy. Chemical Research in Toxicology, 2021, 34, 1114-1123.	3.3	8

#	Article	IF	CITATIONS
73	Advances in neural organoid systems and their application in neurotoxicity testing of environmental chemicals. Genes and Environment, 2021, 43, 39.	2.1	7
74	Low Concentration of Exogenous Carbon Monoxide Modulates Radiation-Induced Bystander Effect in Mammalian Cell Cluster Model. International Journal of Molecular Sciences, 2016, 17, 2051.	4.1	6
75	Investigating the environmental factors affecting the toxicity of silver nanoparticles in Escherichia coli with dual fluorescence analysis. Chemosphere, 2016, 155, 329-335.	8.2	6
76	Involvement of telomerase activity inhibition and telomere dysfunction in silver nanoparticles anticancer effects. Nanomedicine, 2018, 13, 2067-2082.	3.3	6
77	Induction of reproductive cell death in Caenorhabditis elegans across entire linear-energy-transfer range of carbon-ion irradiation. DNA Repair, 2018, 63, 39-46.	2.8	5
78	The Roles of p21Waf1/CIP1 and Hus1 in Generation and Transmission of Damage Signals Stimulated by Low-Dose Alpha-Particle Irradiation. Radiation Research, 2015, 184, 578.	1.5	4
79	Assessment of Genotoxic Effects by Constructing a 3D Cellular System with Highly Sensitive Mutagenic Human–Hamster Hybrid Cells. Chemical Research in Toxicology, 2018, 31, 594-600.	3.3	4
80	Enhancement of DNA damage repair potential in germ cells of Caenorhabditis elegans by a volatile signal from their irradiated partners. DNA Repair, 2020, 86, 102755.	2.8	4
81	Negative Modulation of Bystander DNA Repair Potential by X-Ray Targeted Tissue Volume in Arabidopsis thaliana. Radiation Research, 2019, 191, 556.	1.5	4
82	Development of dual-fluorescence cell-based biosensors for detecting the influence of environmental factors on nanoparticle toxicity. Chemosphere, 2017, 171, 177-184.	8.2	3
83	UV-induced over time transformation of AgNPs in commercial wound dressings and adverse biological effects on Caenorhabditis elegans. NanoImpact, 2020, 17, 100193.	4.5	3
84	The damaging effects of nitrogen ion beam implantation on upland cotton (Gossypium hirsutum L.) pollen grains. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 3959-3967.	1.4	2
85	Assessment of the cytotoxic and mutagenic potential of the Jialu River and adjacent groundwater using human-hamster hybrid cells. Journal of Environmental Sciences, 2018, 70, 133-143.	6.1	2
86	Transferring gfp gene with ion implantation and transient expression of gfp in liliaceous pollen cells*. Progress in Natural Science: Materials International, 2004, 14, 1027-1030.	4.4	1
87	Comparison on the genotoxic effects of nuclear vs cytoplasmic irradiation from the alteration of CD59 gene locus. Science in China Series C: Life Sciences, 2001, 44, 130-135.	1.3	0
88	Inside Front Cover (Adv. Eng. Mater. 5/2010). Advanced Engineering Materials, 2010, 12, n/a-n/a.	3.5	0
89	Alpha-Particles and 60Co y-Rays Have Different Biological Effects on Upland Cotton (Gossypium) Tj ETQq1 1 0.	784314 rgBT 0.2	Överlock
90	Multi-Walled Carbon Nanotubes Induced the Developmental Abnormality of Caenorhabditis elegans.	0.9	0

Journal of Nanoscience and Nanotechnology, 2017, 17, 3913-3919. 90 ٠, 0.9 0