Derek J Blake

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4791824/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transcriptional programs regulating neuronal differentiation are disrupted in DLG2 knockout human embryonic stem cells and enriched for schizophrenia and related disorders risk variants. Nature Communications, 2022, 13, 27.	5.8	8
2	CMYA5 is a novel interaction partner of FHL2 in cardiac myocytes. FEBS Journal, 2022, 289, 4622-4645.	2.2	6
3	Isoform-Specific Reduction of the Basic Helix-Loop-Helix Transcription Factor TCF4 Levels in Huntington's Disease. ENeuro, 2021, 8, ENEURO.0197-21.2021.	0.9	2
4	Proteomic investigation of the Alzheimer's risk gene <i>MEF2C</i> in microglial like cells. Alzheimer's and Dementia, 2021, 17, e050631.	0.4	0
5	A novel <i>TBK1</i> mutation in a family with diverse frontotemporal dementia spectrum disorders. Journal of Physical Education and Sports Management, 2019, 5, a003913.	0.5	19
6	Effect of Trinucleotide Repeat Expansion on the Expression ofTCF4mRNA in Fuchs' Endothelial Corneal Dystrophy. , 2019, 60, 779.		14
7	Transcriptional Changes following Cellular Knockdown of the Schizophrenia Risk Gene <i>SETD1A</i> Are Enriched for Common Variant Association with the Disorder. Molecular Neuropsychiatry, 2019, 5, 109-114.	3.0	6
8	Convergent Evidence That ZNF804A Is a Regulator of Pre-messenger RNA Processing and Gene Expression. Schizophrenia Bulletin, 2019, 45, 1267-1278.	2.3	22
9	The Psychiatric Risk Gene Transcription Factor 4 (TCF4) Regulates Neurodevelopmental Pathways Associated With Schizophrenia, Autism, and Intellectual Disability. Schizophrenia Bulletin, 2018, 44, 1100-1110.	2.3	79
10	Meta-Analysis of Cell Therapy Studies in Heart Failure and Acute Myocardial Infarction. Circulation Research, 2018, 123, 301-308.	2.0	74
11	Potency of Human Cardiosphere-Derived Cells from Patients with Ischemic Heart Disease Is Associated with Robust Vascular Supportive Ability. Stem Cells Translational Medicine, 2017, 6, 1399-1411.	1.6	7
12	Faithful SGCE imprinting in iPSC-derived cortical neurons: an endogenous cellular model of myoclonus-dystonia. Scientific Reports, 2017, 7, 41156.	1.6	18
13	Role of major and brain-specific Sgce isoforms in the pathogenesis of myoclonus-dystonia syndrome. Neurobiology of Disease, 2017, 98, 52-65.	2.1	32
14	Dysregulation of Specialized Delay/Interference-Dependent Working Memory Following Loss of Dysbindin-1A in Schizophrenia-Related Phenotypes. Neuropsychopharmacology, 2017, 42, 1349-1360.	2.8	17
15	Ryanodine receptors are part of the myospryn complex in cardiac muscle. Scientific Reports, 2017, 7, 6312.	1.6	21
16	Myoclonus dystonia and muscular dystrophy: É›â€sarcoglycan is part of the dystrophinâ€associated protein complex in brain. Movement Disorders, 2016, 31, 1694-1703.	2.2	21
17	<scp>C</scp> 9orf72 ablation in mice does not cause motor neuron degeneration or motor deficits. Annals of Neurology, 2015, 78, 426-438.	2.8	225
18	SGCE and myoclonus dystonia: motor characteristics, diagnostic criteria and clinical predictors of genotype. Journal of Neurology, 2014, 261, 2296-2304.	1.8	59

DEREK J BLAKE

#	Article	IF	CITATIONS
19	Association of Transcription Factor 4 (TCF4) variants with schizophrenia and intellectual disability. Current Behavioral Neuroscience Reports, 2014, 1, 206-214.	0.6	4
20	SGCZ mutations are unlikely to be associated with myoclonus dystonia. Neuroscience, 2014, 272, 88-91.	1.1	2
21	The emerging roles of TCF4 in disease and development. Trends in Molecular Medicine, 2014, 20, 322-331.	3.5	136
22	Reduced C9orf72 protein levels in frontal cortex of amyotrophic lateral sclerosis and frontotemporal degeneration brain with the C9ORF72 hexanucleotide repeat expansion. Neurobiology of Aging, 2014, 35, 1779.e5-1779.e13.	1.5	234
23	SGCE mutations cause psychiatric disorders: clinical and genetic characterization. Brain, 2013, 136, 294-303.	3.7	91
24	Knockdown of Human TCF4 Affects Multiple Signaling Pathways Involved in Cell Survival, Epithelial to Mesenchymal Transition and Neuronal Differentiation. PLoS ONE, 2013, 8, e73169.	1.1	94
25	The dystrophin–glycoprotein complex in brain development and disease. Trends in Neurosciences, 2012, 35, 487-496.	4.2	166
26	Functional analysis of <i>TCF4</i> missense mutations that cause Pitt-Hopkins syndrome. Human Mutation, 2012, 33, 1676-1686.	1.1	65
27	Psychiatric disorders, myoclonus dystonia, and the epsilonâ€ s arcoglycan gene: A systematic review. Movement Disorders, 2011, 26, 1939-1942.	2.2	41
28	A gain-of-glycosylation mutation associated with myoclonus-dystonia syndrome affects trafficking and processing of mouse ε-sarcoglycan in the late secretory pathway. Human Mutation, 2011, 32, 1246-1258.	1.1	21
29	Synaptic Dysbindin-1 Reductions in Schizophrenia Occur in an Isoform-Specific Manner Indicating Their Subsynaptic Location. PLoS ONE, 2011, 6, e16886.	1.1	71
30	TCF4, Schizophrenia, and Pitt-Hopkins Syndrome. Schizophrenia Bulletin, 2010, 36, 443-447.	2.3	64
31	TRIM32 is an E3 ubiquitin ligase for dysbindin. Human Molecular Genetics, 2009, 18, 2344-2358.	1.4	123
32	Dysbindin-1 in dorsolateral prefrontal cortex of schizophrenia cases is reduced in an isoform-specific manner unrelated to dysbindin-1 mRNA expression. Human Molecular Genetics, 2009, 18, 3851-3863.	1.4	113
33	The neurobiology of the dystrophin-associated glycoprotein complex. Annals of Medicine, 2009, 41, 344-359.	1.5	113
34	SGCE missense mutations that cause myoclonus-dystonia syndrome impair ε-sarcoglycan trafficking to the plasma membrane: modulation by ubiquitination and torsinA. Human Molecular Genetics, 2007, 16, 327-342.	1.4	125
35	Dystroglycan regulates structure, proliferation and differentiation of neuroepithelial cells in the developing vertebrate CNS. Developmental Biology, 2007, 307, 62-78.	0.9	35
36	Myospryn Is a Novel Binding Partner for Dysbindin in Muscle. Journal of Biological Chemistry, 2004, 279, 10450-10458.	1.6	57

DEREK J BLAKE

#	Article	IF	CITATIONS
37	Schizophrenia genetics: dysbindin under the microscope. Trends in Neurosciences, 2004, 27, 516-519.	4.2	59
38	Dysbindin-1 is reduced in intrinsic, glutamatergic terminals of the hippocampal formation in schizophrenia. Journal of Clinical Investigation, 2004, 113, 1353-1363.	3.9	371
39	Dysbindin-1 is reduced in intrinsic, glutamatergic terminals of the hippocampal formation in schizophrenia. Journal of Clinical Investigation, 2004, 113, 1353-1363.	3.9	206
40	Hermansky-Pudlak syndrome type 7 (HPS-7) results from mutant dysbindin, a member of the biogenesis of lysosome-related organelles complex 1 (BLOC-1). Nature Genetics, 2003, 35, 84-89.	9.4	398
41	The effects of post-translational processing on dystroglycan synthesis and trafficking1. FEBS Letters, 2003, 555, 209-216.	1.3	45
42	Protein glycosylation in disease: new insights into the congenital muscular dystrophies. Trends in Pharmacological Sciences, 2003, 24, 178-183.	4.0	88
43	Function and Genetics of Dystrophin and Dystrophin-Related Proteins in Muscle. Physiological Reviews, 2002, 82, 291-329.	13.1	1,018
44	Mutations in the Fukutin-Related Protein Gene (FKRP) Cause a Form of Congenital Muscular Dystrophy with Secondary Laminin α2 Deficiency and Abnormal Glycosylation of α-Dystroglycan. American Journal of Human Genetics, 2001, 69, 1198-1209.	2.6	563
45	Role of β-Dystrobrevin in Nonmuscle Dystrophin-Associated Protein Complex-Like Complexes in Kidney and Liver. Molecular and Cellular Biology, 2001, 21, 7442-7448.	1.1	24
46	Dysbindin, a Novel Coiled-coil-containing Protein That Interacts with the Dystrobrevins in Muscle and Brain. Journal of Biological Chemistry, 2001, 276, 24232-24241.	1.6	272
47	Different Dystrophin-like Complexes Are Expressed in Neurons and Clia. Journal of Cell Biology, 1999, 147, 645-658.	2.3	210
48	Dystrophin and beta-dystroglycan in photoreceptor terminals from normal and mdx3Cvmouse retinae. European Journal of Neuroscience, 1999, 11, 2121-2133.	1.2	59
49	Genomic organization and refined mapping of the mouse β-dystrobrevin gene. Mammalian Genome, 1998, 9, 857-862.	1.0	22
50	PDZ Domains: Targeting signalling molecules to sub-membranous sites. BioEssays, 1997, 19, 469-479.	1.2	404
51	Utrophin: A Structural and Functional Comparison to Dystrophin. Brain Pathology, 1996, 6, 37-47.	2.1	165
52	Characterization of a 4.8kb transcript from the Duchenne muscular dystrophy locus expressed in Schwannoma cells. Human Molecular Genetics, 1992, 1, 103-109.	1.4	125