Amanda S Coutts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4791696/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functional interplay between E2F7 and ribosomal rRNA gene transcription regulates protein synthesis. Cell Death and Disease, 2018, 9, 577.	2.7	4
2	Transfection. , 2017, , 191-209.		2
3	Regulation of actin nucleation and autophagosome formation. Cellular and Molecular Life Sciences, 2016, 73, 3249-3263.	2.4	35
4	Actin nucleation by WH2 domains at the autophagosome. Nature Communications, 2015, 6, 7888.	5.8	79
5	Cofactor Strap regulates oxidative phosphorylation and mitochondrial p53 activity through ATP synthase. Cell Death and Differentiation, 2015, 22, 156-163.	5.0	12
6	JMY protein, a regulator of P53 and cytoplasmic actin filaments, is expressed in normal and neoplastic tissues. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2014, 465, 715-722.	1.4	12
7	A regulatory circuit that involves HR23B and HDAC6 governs the biological response to HDAC inhibitors. Cell Death and Differentiation, 2013, 20, 1306-1316.	5.0	38
8	E2F-7 couples DNA damage-dependent transcription with the DNA repair process. Cell Cycle, 2013, 12, 3037-3051.	1.3	19
9	Arginine methylation controls growth regulation by E2F-1. EMBO Journal, 2012, 31, 1785-1797.	3.5	178
10	The p53 cofactor Strap exhibits an unexpected TPR motif and oligonucleotide-binding (OB)–fold structure. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3778-3783.	3.3	17
11	Actin nucleators in the nucleus: an emerging theme. Journal of Cell Science, 2012, 125, 3519-3527.	1.2	36
12	Hypoxia-driven cell motility reflects the interplay between JMY and HIF-1α. Oncogene, 2011, 30, 4835-4842.	2.6	35
13	E2F-1 regulation by an unusual DNA damage-responsive DP partner subunit. Cell Death and Differentiation, 2011, 18, 122-132.	5.0	23
14	Actin nucleation by a transcription co-factor that links cytoskeletal events with the p53 response. Cell Cycle, 2010, 9, 1511-1515.	1.3	15
15	A transcription co-factor integrates cell adhesion and motility with the p53 response. Proceedings of the United States of America, 2009, 106, 19872-19877.	3.3	85
16	p53 ubiquitination by Mdm2: A never ending tail?. DNA Repair, 2009, 8, 483-490.	1.3	49
17	p53-cofactor JMY is a multifunctional actin nucleation factor. Nature Cell Biology, 2009, 11, 451-459.	4.6	220
18	ATM and Chk2 kinase target the p53 cofactor Strap. EMBO Reports, 2008, 9, 1222-1229.	2.0	16

Amanda S Coutts

#	Article	IF	CITATIONS
19	DNAâ€damage response control of E2F7 and E2F8. EMBO Reports, 2008, 9, 252-259.	2.0	112
20	Mdm2 Widens Its Repertoire. Cell Cycle, 2007, 6, 827-829.	1.3	21
21	Mdm2 targets the p53 transcription cofactor JMY for degradation. EMBO Reports, 2007, 8, 84-90.	2.0	72
22	The p53 response during DNA damage: impact of transcriptional cofactors. Biochemical Society Symposia, 2006, 73, 181-189.	2.7	41
23	RNAi knockdown of the focal adhesion protein TES reveals its role in actin stress fibre organisation. Cytoskeleton, 2005, 60, 140-152.	4.4	49
24	The p53 response: Emerging levels of co-factor complexity. Biochemical and Biophysical Research Communications, 2005, 331, 778-785.	1.0	74
25	Characterisation of chicken TES and its role in cell spreading and motility. Cytoskeleton, 2004, 57, 133-142.	4.4	27
26	TES is a novel focal adhesion protein with a role in cell spreading. Journal of Cell Science, 2003, 116, 897-906.	1.2	89
27	Multiple Facets of Estrogen Receptor in Human Breast Cancer. , 2000, , 17-34.		Ο
28	Variant estrogen receptor-alpha messenger RNA expression in hormone-independent human breast cancer cells. Journal of Molecular Endocrinology, 1999, 23, 325-336.	1.1	4
29	The pathophysiological role of estrogen receptor variants in human breast cancer. Journal of Steroid Biochemistry and Molecular Biology, 1998, 65, 175-180.	1.2	52
30	Estrogen Regulates the Association of Intermediate Filament Proteins with Nuclear DNA in Human Breast Cancer Cells. Journal of Biological Chemistry, 1998, 273, 29093-29097.	1.6	33
31	Estrogen Receptor Diminishes DNA-Binding Activities of Chicken GATA-1 and CACCC-Binding Proteins. DNA and Cell Biology, 1997, 16, 1477-1482.	0.9	3
32	Oestrogen Receptor Variants and Mutations in Human Breast Cancer. Annals of Medicine, 1997, 29, 221-234.	1.5	33
33	Estrogen receptor variants and mutations. Journal of Steroid Biochemistry and Molecular Biology, 1997, 62, 363-372.	1.2	97
34	Analysis of human breast cancer nuclear proteins binding to the promoter elements of the c-myc gene. , 1996, 60, 560-571.		17
35	Estrogen regulation of nuclear matrix-intermediate filament proteins in human breast cancer cells. , 1996, 63, 174-184.		35
36	Expression of insulin-like growth factor binding proteins by T-47D human breast cancer cells: regulation by progestins and antiestrogens. Breast Cancer Research and Treatment, 1994, 32, 153-164.	1.1	14

#	Article	IF	CITATIONS
37	Mechanisms of growth inhibition by antiestrogens and progestins in human breast and endometrial cancer cells. Journal of Steroid Biochemistry and Molecular Biology, 1992, 43, 117-121.	1.2	19