
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4791655/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wind wave footprint of tropical cyclones from satellite data. International Journal of Climatology, 2023, 43, 372-381.	1.5	4
2	Daily synoptic conditions associated with occurrences of compound events in estuaries along North Atlantic coastlines. International Journal of Climatology, 2022, 42, 5694-5713.	1.5	12
3	A hybrid regional climate downscaling for the southern Brazil coastal region. International Journal of Climatology, 2022, 42, 6753-6770.	1.5	2
4	Characterizing storm-induced coastal change hazards along the United States West Coast. Scientific Data, 2022, 9, .	2.4	3
5	A Multiscale Approach to Shoreline Prediction. Geophysical Research Letters, 2021, 48, .	1.5	20
6	Climateâ€Based Emulator of Distant Swell Trains and Local Seas Approaching a Pacific Atoll. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC016919.	1.0	8
7	The Application of Ensemble Wave Forcing to Quantify Uncertainty of Shoreline Change Predictions. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2019JF005506.	1.0	21
8	Seas and swells throughout New Zealand: A new partitioned hindcast. Ocean Modelling, 2021, 168, 101897.	1.0	10
9	Projecting Climate Dependent Coastal Flood Risk With a Hybrid Statistical Dynamical Model. Earth's Future, 2021, 9, e2021EF002285.	2.4	14
10	Historical and future storm surge around New Zealand: From the 19th century to the end of the 21st century. International Journal of Climatology, 2020, 40, 1512-1525.	1.5	13
11	A multivariate, stochastic, climate-based wave emulator for shoreline change modelling. Ocean Modelling, 2020, 154, 101695.	1.0	17
12	Climate-induced variability in South Atlantic wave direction over the past three millennia. Scientific Reports, 2020, 10, 18553.	1.6	11
13	Wave climates: deep water to shoaling zone. , 2020, , 39-59.		Ο
14	Blind testing of shoreline evolution models. Scientific Reports, 2020, 10, 2137.	1.6	112
15	Steps to Develop Early Warning Systems and Future Scenarios of Storm Wave-Driven Flooding Along Coral Reef-Lined Coasts. Frontiers in Marine Science, 2020, 7, .	1.2	19
16	Predicting Climateâ€Driven Coastlines With a Simple and Efficient Multiscale Model. Journal of Geophysical Research F: Earth Surface, 2019, 124, 1596-1624.	1.0	64
17	A methodology to assess the probability of marine litter accumulation in estuaries. Marine Pollution Bulletin, 2019, 144, 309-324.	2.3	26
18	HyCReWW: A Hybrid Coral Reef Wave and Water level metamodel. Computers and Geosciences, 2019, 127, 85-90	2.0	27

#	Article	IF	CITATIONS
19	Timeâ€Varying Emulator for Short and Longâ€Term Analysis of Coastal Flood Hazard Potential. Journal of Geophysical Research: Oceans, 2019, 124, 9209-9234.	1.0	21
20	A recent increase in global wave power as a consequence of oceanic warming. Nature Communications, 2019, 10, 205.	5.8	283
21	Marine climate variability based on weather patterns for a complicated island setting: The New Zealand case. International Journal of Climatology, 2019, 39, 1777-1786.	1.5	19
22	Downscaling Changing Coastlines in a Changing Climate: The Hybrid Approach. Journal of Geophysical Research F: Earth Surface, 2018, 123, 229-251.	1.0	27
23	A Meta-Modelling Approach for Estimating Long-Term Wave Run-Up and Total Water Level on Beaches. Journal of Coastal Research, 2018, 342, 475-489.	0.1	4
24	Ecological typologies of large areas. An application in the Mediterranean Sea. Journal of Environmental Management, 2018, 205, 59-72.	3.8	11
25	Directional correction of modeled sea and swell wave heights using satellite altimeter data. Ocean Modelling, 2018, 131, 103-114.	1.0	12
26	A Climate Index Optimized for Longshore Sediment Transport Reveals Interannual and Multidecadal Littoral Cell Rotations. Journal of Geophysical Research F: Earth Surface, 2018, 123, 1958-1981.	1.0	42
27	Identification of storm events and contiguous coastal sections for deterministic modeling of extreme coastal flood events in response to climate change. Coastal Engineering, 2018, 140, 316-330.	1.7	14
28	Global reconstructed daily surge levels from the 20th Century Reanalysis (1871–2010). Global and Planetary Change, 2017, 148, 9-21.	1.6	37
29	Multiscale climate emulator of multimodal wave spectra: MUSCLE-spectra. Journal of Geophysical Research: Oceans, 2017, 122, 1400-1415.	1.0	17
30	A Multimodal Wave Spectrum–Based Approach for Statistical Downscaling of Local Wave Climate. Journal of Physical Oceanography, 2017, 47, 375-386.	0.7	32
31	A global classification of coastal flood hazard climates associated with large-scale oceanographic forcing. Scientific Reports, 2017, 7, 5038.	1.6	85
32	Controls of Multimodal Wave Conditions in a Complex Coastal Setting. Geophysical Research Letters, 2017, 44, 12,315.	1.5	16
33	Improving construction management of port infrastructures using an advanced computer-based system. Automation in Construction, 2017, 81, 122-133.	4.8	3
34	Comparative Coastal Risk Index (CCRI): A multidisciplinary risk index for Latin America and the Caribbean. PLoS ONE, 2017, 12, e0187011.	1.1	38
35	On the feasibility of the use of wind SAR to downscale waves on shallow water. Ocean Science, 2016, 12, 39-49.	1.3	2
36	An extreme value model for maximum wave heights based on weather types. Journal of Geophysical Research: Oceans, 2016, 121, 1262-1273.	1.0	26

#	Article	IF	CITATIONS
37	A multiscale climate emulator for longâ€ŧerm morphodynamics (MUSCLEâ€morpho). Journal of Geophysical Research: Oceans, 2016, 121, 775-791.	1.0	44
38	An atmospheric-to-marine synoptic classification for statistical downscaling marine climate. Ocean Dynamics, 2016, 66, 1589-1601.	0.9	21
39	Long-term changes in the frequency, intensity and duration of extreme storm surge events in southern Europe. Climate Dynamics, 2016, 46, 1503-1516.	1.7	76
40	CAN WE DISTINGUISH COASTAL IMPACTS OF THE DIFFERENT ENSO FLAVORS?. , 2015, , .		0
41	THE NEW COASTAL MODELLING SYSTEM SMC-BRAZIL AND ITS APPLICATION TO THE EROSIONAL PROBLEM IN THE MASSAGUAÇU BEACH (SAO PAULO, BRAZIL). Coastal Engineering Proceedings, 2015, 1, 49.	0.1	2
42	Statistical multi-model climate projections of surface ocean waves in Europe. Ocean Modelling, 2015, 96, 161-170.	1.0	78
43	A CLIMATE-BASED MULTIVARIATE WAVE EMULATOR FOR LONG-TERM MORPHODYNAMIC SIMULATIONS. , 2015, , .		0
44	A nearshore long-term infragravity wave analysis for open harbours. Coastal Engineering, 2015, 97, 78-90.	1.7	18
45	Probabilistic relationships between wind and surface water circulation patterns in the SE Bay of Biscay. Ocean Dynamics, 2015, 65, 1289-1303.	0.9	21
46	Numerical Analysis and Diagnosis of the Hydrodynamic Effects Produced by Hurricane Gordon along the Coast of Spain. Weather and Forecasting, 2014, 29, 666-683.	0.5	0
47	A methodology for deriving extreme nearshore sea conditions for structural design and flood risk analysis. Coastal Engineering, 2014, 88, 15-26.	1.7	84
48	Changing extreme sea levels along European coasts. Coastal Engineering, 2014, 87, 4-14.	1.7	102
49	Autoregressive logistic regression applied to atmospheric circulation patterns. Climate Dynamics, 2014, 42, 537-552.	1.7	28
50	An approach to assess flooding and erosion risk for open beaches in a changing climate. Coastal Engineering, 2014, 87, 50-76.	1.7	61
51	High-resolution sea wind hindcasts over the Mediterranean area. Climate Dynamics, 2014, 42, 1857-1872.	1.7	81
52	Wave climate projections along the French coastline: Dynamical versus statistical downscaling methods. Ocean Modelling, 2014, 84, 35-50.	1.0	31
53	Surfing wave climate variability. Global and Planetary Change, 2014, 121, 19-25.	1.6	16
54	Spectral Ocean Wave Climate Variability Based on Atmospheric Circulation Patterns. Journal of Physical Oceanography, 2014, 44, 2139-2152.	0.7	28

#	Article	IF	CITATIONS
55	A weather-type statistical downscaling framework for ocean wave climate. Journal of Geophysical Research: Oceans, 2014, 119, 7389-7405.	1.0	91
56	Evaluating the performance of CMIP3 and CMIP5 global climate models over the north-east Atlantic region. Climate Dynamics, 2014, 43, 2663-2680.	1.7	98
57	A method for finding the optimal predictor indices for local wave climate conditions. Ocean Dynamics, 2014, 64, 1025-1038.	0.9	39
58	ESTELA: a method for evaluating the source and travel time of the wave energy reaching a local area. Ocean Dynamics, 2014, 64, 1181-1191.	0.9	52
59	Climate-based Monte Carlo simulation of trivariate sea states. Coastal Engineering, 2013, 80, 107-121.	1.7	14
60	Variability of multivariate wave climate in Latin America and the Caribbean. Global and Planetary Change, 2013, 100, 70-84.	1.6	68
61	Long-term changes in sea-level components in Latin America and the Caribbean. Global and Planetary Change, 2013, 104, 34-50.	1.6	72
62	Mixed extreme wave climate model for reanalysis databases. Stochastic Environmental Research and Risk Assessment, 2013, 27, 757-768.	1.9	18
63	Extreme wave climate changes in Central-South America. Climatic Change, 2013, 119, 277-290.	1.7	30
64	A simplified method to downscale wave dynamics on vertical breakwaters. Coastal Engineering, 2013, 71, 68-77.	1.7	14
65	High resolution downscaled ocean waves (DOW) reanalysis in coastal areas. Coastal Engineering, 2013, 72, 56-68.	1.7	97
66	A multivariate approach to estimate design loads for offshore wind turbines. Wind Energy, 2013, 16, 1091-1106.	1.9	12
67	Regression Models for Outlier Identification (Hurricanes and Typhoons) in Wave Hindcast Databases. Journal of Atmospheric and Oceanic Technology, 2012, 29, 267-285.	0.5	23
68	Coastal waters classification based on physical attributes along the NE Atlantic region. An approach for rocky macroalgae potential distribution. Estuarine, Coastal and Shelf Science, 2012, 112, 105-114.	0.9	38
69	Exploring the interannual variability of extreme wave climate in the Northeast Atlantic Ocean. Ocean Modelling, 2012, 59-60, 31-40.	1.0	32
70	An Engineering Approach for Modeling Hurricane Extreme Waves Using Analytical and Numerical Tools. , 2012, , .		1
71	Future regional projections of extreme temperatures in Europe: a nonstationary seasonal approach. Climatic Change, 2012, 113, 371-392.	1.7	32
72	A Global Ocean Wave (GOW) calibrated reanalysis from 1948 onwards. Coastal Engineering, 2012, 65, 38-55.	1.7	200

#	Article	IF	CITATIONS
73	A multivariate approach to estimate design loads for offshore wind turbines. , 2011, , .		Ο
74	Directional calibrated wind and wave reanalysis databases using instrumental data for optimal design of off-shore wind farms. , 2011, , .		10
75	Downscaling wave energy resources to coastal areas. , 2011, , .		Ο
76	Global extreme wave height variability based on satellite data. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	158
77	Directional Calibration of Wave Reanalysis Databases Using Instrumental Data. Journal of Atmospheric and Oceanic Technology, 2011, 28, 1466-1485.	0.5	66
78	A methodology to define extreme wave climate using reanalysis data bases. , 2011, , .		2
79	Analysis of clustering and selection algorithms for the study of multivariate wave climate. Coastal Engineering, 2011, 58, 453-462.	1.7	210
80	A hybrid efficient method to downscale wave climate to coastal areas. Coastal Engineering, 2011, 58, 851-862.	1.7	166
81	A methodology to evaluate regional-scale offshore wind energy resources. , 2011, , .		17
82	Evaluation of global wave energy resource. , 2011, , .		10
83	Multivariate Wave Climate Using Self-Organizing Maps. Journal of Atmospheric and Oceanic Technology, 2011, 28, 1554-1568.	0.5	23
84	Pseudo-optimal parameter selection of non-stationary generalized extreme value models for environmental variables. Environmental Modelling and Software, 2010, 25, 1592-1607.	1.9	21
85	Sensitivity analysis of time-dependent generalized extreme value models for ocean climate variables. Advances in Water Resources, 2010, 33, 833-845.	1.7	18
86	Spatial and temporal variability of nearshore wave energy resources along Spain: Methodology and results. , 2010, , .		1
87	Is the extreme wave climate in the NE Pacific increasing?. , 2010, , .		3
88	Extreme wave climate variability in southern Europe using satellite data. Journal of Geophysical Research, 2010, 115, .	3.3	70
89	Influence of the NAO on the northwestern Mediterranean wave climate. Scientia Marina, 2010, 74, 55-64.	0.3	11
90	Introducing marine climate variability into life cycle management of coastal and offshore structures. , 2009, , .		4

#	Article	IF	CITATIONS
91	Forecasting seasonal to interannual variability in extreme sea levels. ICES Journal of Marine Science, 2009, 66, 1490-1496.	1.2	30
92	The influence of seasonality on estimating return values of significant wave height. Coastal Engineering, 2009, 56, 211-219.	1.7	79
93	Calibration of a Lagrangian Transport Model Using Drifting Buoys Deployed during the <i>Prestige </i> Oil Spill. Journal of Coastal Research, 2009, 251, 80-90.	0.1	77
94	Analyzing the multidimensional wave climate with self organizing maps. , 2009, , .		2
95	Seasonality and duration in extreme value distributions of significant wave height. Ocean Engineering, 2008, 35, 131-138.	1.9	64
96	A method for spatial calibration of wave hindcast data bases. Continental Shelf Research, 2008, 28, 391-398.	0.9	23
97	Variability of extreme wave heights in the northeast Pacific Ocean based on buoy measurements. Geophysical Research Letters, 2008, 35, .	1.5	114
98	Analyzing Monthly Extreme Sea Levels with a Time-Dependent GEV Model. Journal of Atmospheric and Oceanic Technology, 2007, 24, 894-911.	0.5	100
99	A probability distribution for depth-limited extreme wave heights in a sea state. Coastal Engineering, 2007, 54, 878-882.	1.7	9
100	Morphodynamic classification of sandy beaches in low energetic marine environment. Marine Geology, 2007, 242, 235-246.	0.9	56
101	An integrated coastal modeling system for analyzing beach processes and beach restoration projects, SMC. Computers and Geosciences, 2007, 33, 916-931.	2.0	83
102	Long-term tidal level distribution using a wave-by-wave approach. Advances in Water Resources, 2007, 30, 2271-2282.	1.7	10
103	Estimation of the long-term variability of extreme significant wave height using a time-dependent Peak Over Threshold (POT) model. Journal of Geophysical Research, 2006, 111, .	3.3	146
104	The effect of temporal dependence on the estimation of the frequency of extreme ocean climate events. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 462, 1683-1697.	1.0	22
105	Reply to "On the new wave height distribution― Coastal Engineering, 2006, 53, 709.	1.7	0
106	The Prestige Oil Spill in Cantabria (Bay of Biscay). Part I: Operational Forecasting System for Quick Response, Risk Assessment, and Protection of Natural Resources. Journal of Coastal Research, 2006, 226, 1474-1489.	0.1	76
107	Models for the Turbulent Diffusion Terms of Shallow Water Equations. Journal of Hydraulic Engineering, 2005, 131, 217-223.	0.7	23
108	Transformation model of wave height distribution on planar beaches. Coastal Engineering, 2004, 50, 97-115.	1.7	38

#	Article	IF	CITATIONS
109	An empirical model to estimate the propagation of random breaking and nonbreaking waves over vegetation fields. Coastal Engineering, 2004, 51, 103-118.	1.7	425
110	A perturbation method to solve dispersion equations for water waves over dissipative media. Coastal Engineering, 2004, 51, 81-89.	1.7	66
111	A Perturbation Method for Wave and Wave-Induced Currents Computations in Beach Morphology Models. , 2001, , 393.		3
112	Wave-Induced Mean Magnitudes in Permeable Submerged Breakwaters. Journal of Waterway, Port, Coastal and Ocean Engineering, 2001, 127, 7-15.	0.5	35
113	Hydrodynamics induced by wind waves in a vegetation field. Journal of Geophysical Research, 1999, 104, 18383-18396.	3.3	175
114	Corrientes de retorno en medios reflejantes y disipativos. IngenierÃa Del Agua, 1998, 5, .	0.2	4