Peter Van den Broeck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4791638/publications.pdf

Version: 2024-02-01

34 papers 615 citations

840776 11 h-index 25 g-index

35 all docs

35 docs citations

35 times ranked 384 citing authors

#	Article	IF	CITATIONS
1	Vibration serviceability of footbridges: Evaluation of the current codes of practice. Engineering Structures, 2014, 59, 448-461.	5.3	129
2	Wave propagation in layered dry, saturated and unsaturated poroelastic media. International Journal of Solids and Structures, 1998, 35, 4753-4778.	2.7	93
3	The impact of vertical human-structure interaction on the response of footbridges to pedestrian excitation. Journal of Sound and Vibration, 2017, 402, 104-121.	3.9	74
4	Characterisation of walking loads by 3D inertial motion tracking. Journal of Sound and Vibration, 2014, 333, 5212-5226.	3.9	65
5	Robust design of a TMD for the vibration serviceability of a footbridge. Engineering Structures, 2016, 123, 408-418.	5. 3	56
6	Numerical and Experimental Evaluation of the Dynamic Performance of a Footbridge with Tuned Mass Dampers. Journal of Bridge Engineering, 2016, 21, .	2.9	29
7	A spectral load model for pedestrian excitation including vertical human-structure interaction. Engineering Structures, 2018, 156, 537-547.	5. 3	21
8	Identification and Modelling of Vertical Human-Structure Interaction. Conference Proceedings of the Society for Experimental Mechanics, 2015, , 319-330.	0.5	17
9	A Robust Methodology for the Reconstruction of the Vertical Pedestrian-Induced Load from the Registered Body Motion. Vibration, 2018, 1, 250-268.	1.9	17
10	Robust vibration serviceability assessment of footbridges subjected to pedestrian excitation: strategy and applications. Engineering Structures, 2018, 171, 236-246.	5. 3	15
11	Pedestrian-Induced Vibrations of Footbridges: An Extended Spectral Approach. Journal of Bridge Engineering, 2020, 25, .	2.9	13
12	Eeklo Footbridge: Benchmark Dataset on Pedestrian-Induced Vibrations. Journal of Bridge Engineering, 2021, 26, .	2.9	12
13	Numerical and experimental analysis of the vibration serviceability of the Bears' Cage footbridge. Structure and Infrastructure Engineering, 2017, 13, 390-400.	3.7	11
14	Human-Induced Vibrations of Footbridges: The Effect of Vertical Human-Structure Interaction. Conference Proceedings of the Society for Experimental Mechanics, 2016, , 299-307.	0.5	11
15	A simplified method to account for vertical human-structure interaction. Structures, 2021, 32, 2004-2019.	3. 6	10
16	A simplified method to account for the effect of human-human interaction on the pedestrian-induced vibrations of footbridges. Procedia Engineering, 2017, 199, 2907-2912.	1.2	7
17	Twin Rotor Damper for Human-Induced Vibrations of Footbridges. Journal of Structural Engineering, 2020, 146, .	3.4	7
18	Reduced-order models for vertical human-structure interaction. Journal of Physics: Conference Series, 2016, 744, 012030.	0.4	5

#	Article	IF	CITATIONS
19	Application of a Direct Stiffness Method to Wave Propagation in Multiphase Poroelastic Media. Meccanica, 1997, 32, 205-214.	2.0	4
20	Data-Driven Synchronization Analysis of a Bouncing Crowd. Shock and Vibration, 2019, 2019, 1-23.	0.6	4
21	Vision-Based Methodology for Characterizing the Flow of a High-Density Crowd on Footbridges: Strategy and Application. Infrastructures, 2020, 5, 51.	2.8	3
22	THE IMPACT OF VERTICAL HUMAN-STRUCTURE INTERACTION FOR FOOTBRIDGES. , 2015, , .		3
23	Simulation of Human-induced Vibrations Based on the Characterized In-field Pedestrian Behavior. Journal of Visualized Experiments, 2016, , .	0.3	2
24	Inverse identification of the pedestrian characteristics governing human-structure interaction. Procedia Engineering, 2017, 199, 2889-2894.	1.2	2
25	Human-structure interaction effects on the maximum dynamic response based on an equivalent spectral model for pedestrian-induced loading. Journal of Physics: Conference Series, 2016, 744, 012031.	0.4	1
26	Comparison of TMD designs for a footbridge subjected to human-induced vibrations accounting for structural and load uncertainties. Procedia Engineering, 2017, 199, 1713-1718.	1.2	1
27	AN OPEN ACCESS BENCHMARK DATASET ON PEDESTRIAN-INDUCED VIBRATIONS COLLECTED ON THE EEKLO FOOTBRIDGE. , 2020, , .		1
28	IDENTIFICATION OF HUMAN-STRUCTURE INTERACTION BASED ON FULL-SCALE OBSERVATIONS. , 2020, , .		1
29	CONTACT FORCE RECONSTRUCTION ON VIBRATING SURFACES. , 2020, , .		1
30	Measurement and Prediction of the Pedestrian-Induced Vibrations of a Footbridge. Noise and Vibration Worldwide, 2009, 40, 10-19.	1.0	0
31	Prediction of peak response values of structures with and without TMD subjected to random pedestrian flows. Journal of Physics: Conference Series, 2016, 744, 012227.	0.4	O
32	Contact Force Reconstruction from the Lower-Back Accelerations during Walking on Vibrating Surfaces. Vibration, 2021, 4, 205-231.	1.9	0
33	Identification of Human-Induced Loading Using a Joint Input-State Estimation Algorithm. Conference Proceedings of the Society for Experimental Mechanics, 2017, , 353-355.	0.5	0
34	Experimental Verification of the Dynamic Performance of a Footbridge Under High Pedestrian Densities., 2017,,.		0