Aleksenskii Aleksandr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4791457/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unusually tight aggregation in detonation nanodiamond: Identification and disintegration. Carbon, 2005, 43, 1722-1730.	10.3	579
2	The structure of diamond nanoclusters. Physics of the Solid State, 1999, 41, 668-671.	0.6	174
3	Defects and impurities in nanodiamonds: EPR, NMR and TEM study. Journal of Physics and Chemistry of Solids, 2002, 63, 1993-2001.	4.0	174
4	Deagglomeration of Detonation Nanodiamonds. Nanoscience and Nanotechnology Letters, 2011, 3, 68-74.	0.4	156
5	Diamond-graphite phase transition in ultradisperse-diamond clusters. Physics of the Solid State, 1997, 39, 1007-1015.	0.6	131
6	Nanoscale Perforation of Graphene Oxide during Photoreduction Process in the Argon Atmosphere. Journal of Physical Chemistry C, 2016, 120, 28261-28269.	3.1	85
7	Optical properties of nanodiamond layers. Physics of the Solid State, 2001, 43, 145-150.	0.6	72
8	Rehybridization of carbon on facets of detonation diamond nanocrystals and forming hydrosols of individual particles. Carbon, 2017, 122, 737-745.	10.3	72
9	Monolayer graphene from graphite oxide. Diamond and Related Materials, 2011, 20, 105-108.	3.9	66
10	Gd(III)-Grafted Detonation Nanodiamonds for MRI Contrast Enhancement. Journal of Physical Chemistry C, 2019, 123, 2627-2631.	3.1	46
11	Structure and magnetic properties of detonation nanodiamond chemically modified by copper. Journal of Applied Physics, 2010, 107, .	2.5	45
12	Infrared absorption study of surface functional groups providing chemical modification of nanodiamonds by divalent copper ion complexes. Diamond and Related Materials, 2011, 20, 1234-1238.	3.9	42
13	Transition sol-gel in nanodiamond hydrosols. Carbon, 2017, 114, 242-249.	10.3	42
14	Proton magnetic resonance study of diamond nanoparticles decorated by transition metal ions. Journal Physics D: Applied Physics, 2011, 44, 125303.	2.8	40
15	Magnetic resonance evidence of manganese–graphene complexes in reduced graphene oxide. Solid State Communications, 2012, 152, 466-468.	1.9	40
16	Magnetic Resonance Study of Detonation Nanodiamonds with Surface Chemically Modified by Transition Metal Ions. Applied Magnetic Resonance, 2009, 36, 317-329.	1.2	37
17	Nanodiamonds. , 2010, , .		37
18	Effect of tetraethoxysilane pretreatment on synthesis of colloidal particles of amorphous silicon dioxide. Colloid Journal, 2011, 73, 546-550.	1.3	35

#	Article	IF	CITATIONS
19	Effect of hydrogen on the structure of ultradisperse diamond. Physics of the Solid State, 2000, 42, 1575-1578.	0.6	34
20	Detonation Nanodiamonds as Catalyst Supports. Fullerenes Nanotubes and Carbon Nanostructures, 2010, 19, 63-68.	2.1	34
21	PVPâ€coated Gdâ€grafted nanodiamonds as a novel and potentially safer contrast agent for in vivo MRI. Magnetic Resonance in Medicine, 2021, 86, 935-942.	3.0	32
22	Ultradisperse diamond cluster aggregation studied by atomic force microscopy. Technical Physics Letters, 2000, 26, 819-821.	0.7	30
23	Locating inherent unpaired orbital spins in detonation nanodiamonds through the targeted surface decoration by paramagnetic probes. Diamond and Related Materials, 2011, 20, 318-321.	3.9	30
24	On the structure of concentrated detonation nanodiamond hydrosols with a positive ζ potential: Analysis of small-angle neutron scattering. Chemical Physics Letters, 2016, 658, 58-62.	2.6	30
25	Magnetic Resonance Study of Gadolinium-Grafted Nanodiamonds. Journal of Physical Chemistry C, 2016, 120, 19804-19811.	3.1	28
26	Optical properties of detonation nanodiamond hydrosols. Physics of the Solid State, 2012, 54, 578-585.	0.6	27
27	Ordered porous diamond films fabricated by colloidal crystal templating. Nanotechnology, 2012, 23, 015601.	2.6	26
28	Absorption and scattering of light in nanodiamond hydrosols. Diamond and Related Materials, 2011, 20, 279-284.	3.9	25
29	Combined Experimental and DFT Study of the Chemical Binding of Copper Ions on the Surface of Nanodiamonds. Bulletin of the Chemical Society of Japan, 2014, 87, 693-704.	3.2	22
30	Sol–Gel Transition in Nanodiamond Aqueous Dispersions by Small-Angle Scattering. Journal of Physical Chemistry C, 2019, 123, 18028-18036.	3.1	22
31	Single-layer graphene oxide films on a silicon surface. Technical Physics, 2013, 58, 1614-1618.	0.7	20
32	One-step synthesis of a suspended ultrathin graphene oxide film: Application in transmission electron microscopy. Micron, 2015, 68, 23-26.	2.2	20
33	Nanodiamonds intercalated with metals: structure and diamond-graphite phase transitions. Diamond and Related Materials, 2004, 13, 2076-2080.	3.9	18
34	Deaggregation of diamond nanoparticles studied by NMR. Diamond and Related Materials, 2012, 27-28, 45-48.	3.9	18
35	Aerosol deposition of detonation nanodiamonds used as nucleation centers for the growth of nanocrystalline diamond films and isolated particles. Technical Physics, 2011, 56, 718-724.	0.7	17
36	The applicability of dynamic light scattering to determination of nanoparticle dimensions in sols. Technical Physics Letters, 2012, 38, 1049-1052.	0.7	17

ALEKSENSKII ALEKSANDR

#	Article	IF	CITATIONS
37	Stabilization of detonation nanodiamonds hydrosol in physiological media with poly(vinylpyrrolidone). Diamond and Related Materials, 2018, 87, 78-89.	3.9	16
38	Interaction of Carboxyl Groups with Rare Metal lons on the Surface of Detonation Nanodiamonds. European Journal of Inorganic Chemistry, 2019, 2019, 4345-4349.	2.0	15
39	The Fundamental Properties and Characteristics of Nanodiamonds. , 2010, , 55-77.		13
40	Intercalation of ultrafine-dispersed diamond in aqueous suspensions. Physics of the Solid State, 2004, 46, 685-686.	0.6	12
41	Comprehensive study of electrosurface properties of detonation nanodiamond particle agglomerates in aqueous KCl solutions. Colloid Journal, 2012, 74, 463-471.	1.3	12
42	Surface charge of detonation nanodiamond particles in aqueous solutions of simple 1 : 1 Electrolytes. Colloid Journal, 2010, 72, 640-646.	1.3	11
43	Manganese-grafted detonation nanodiamond, a novel potential MRI contrast agent. Diamond and Related Materials, 2021, 119, 108590.	3.9	11
44	Magnetic studies of a detonation nanodiamond with the surface modified by gadolinium ions. Physics of the Solid State, 2015, 57, 2314-2319.	0.6	10
45	Clustering of Diamond Nanoparticles, Fluorination and Efficiency of Slow Neutron Reflectors. Nanomaterials, 2021, 11, 1945.	4.1	10
46	Revealing the structure of composite nanodiamond–graphene oxide aqueous dispersions by small-angle scattering. Diamond and Related Materials, 2020, 103, 107670.	3.9	9
47	Optical properties of layers of ultradisperse diamond obtained from an aqueous suspension. Technical Physics Letters, 1997, 23, 874-876.	0.7	7
48	Formation of nanodiamond films from aqueous suspensions during spin coating. Technical Physics, 2016, 61, 401-408.	0.7	7
49	SANS analysis of aqueous dispersions of Eu- and Gd-grafted nanodiamond particles. Fullerenes Nanotubes and Carbon Nanostructures, 2020, 28, 272-276.	2.1	6
50	Boron-doped transparent conducting nanodiamond films. Technical Physics Letters, 2011, 37, 322-325.	0.7	4
51	The Nucleation and Growth of Nanocrystalline Diamond Films in Millimeter-Wave CVD Reactor. Fullerenes Nanotubes and Carbon Nanostructures, 2012, 20, 600-605.	2.1	4
52	A Study of the Process of Gold Plating from Citrate and Phosphate Electrolytes in the Presence of Modified Detonation Nanodiamonds. Journal of Superhard Materials, 2019, 41, 169-177.	1.2	4
53	Examining relaxivities in suspensions of nanodiamonds grafted by magnetic entities: comparison of two approaches. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2020, 33, 885-888.	2.0	4
54	Etching of wrinkled graphene oxide films in noble gas atmosphere under UV irradiation. Nanosystems: Physics, Chemistry, Mathematics, 2016, , 81-86.	0.4	4

#	Article	IF	CITATIONS
55	Effect of Particle Sizes on the Efficiency of Fluorinated Nanodiamond Neutron Reflectors. Nanomaterials, 2021, 11, 3067.	4.1	4
56	Spatially Resolved Spin–Lattice Relaxation Times and Line Widths in Manganese-Grafted Detonation Nanodiamonds. Journal of Physical Chemistry C, 2022, 126, 1489-1495.	3.1	4
57	Detonation nanodiamond complexes with cancer stem cells inhibitors or paracrine products of mesenchymal stem cells as new potential medications. Crystallography Reports, 2015, 60, 763-767.	0.6	3
58	Structural Studies of Detonation Nanodiamonds with Grafted Metal Ions by Small-Angle Neutron Scattering. Journal of Surface Investigation, 2020, 14, S132-S133.	0.5	3
59	Adapter modification for a high-speed centrifuge rotor for use with standard medical polypropylene tubes. Instruments and Experimental Techniques, 2017, 60, 880-882.	0.5	1
60	Diffusion of Overheated and Overcooled Particles as a Mechanism of Thermal Conductivity in Nanofluids. JETP Letters, 2020, 111, 338-342.	1.4	1
61	Deagglomeration of polycrystalline diamond synthesized from graphite by shock-compression. Fullerenes Nanotubes and Carbon Nanostructures, 2021, 29, 779-782.	2.1	1