Fabrizio Montarsi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4791398/publications.pdf

Version: 2024-02-01

257450 302126 1,634 43 24 39 citations h-index g-index papers 45 45 45 1837 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Control methods against invasive <i>Aedes</i> mosquitoes in Europe: a review. Pest Management Science, 2015, 71, 1471-1485.	3.4	162
2	First report in italy of the exotic mosquito species Aedes (Finlaya) koreicus, a potential vector of arboviruses and filariae. Parasites and Vectors, 2011, 4, 188.	2.5	96
3	Understanding West Nile virus ecology in Europe: Culex pipiens host feeding preference in a hotspot of virus emergence. Parasites and Vectors, 2015, 8, 213.	2.5	95
4	Development of Dirofilaria immitis within the mosquito Aedes (Finlaya) koreicus, a new invasive species for Europe. Parasites and Vectors, 2015, 8, 177.	2.5	86
5	Detection of Invasive Mosquito Vectors Using Environmental DNA (eDNA) from Water Samples. PLoS ONE, 2016, 11, e0162493.	2.5	83
6	Occurrence and identification of risk areas of Ixodes ricinus-borne pathogens: a cost-effectiveness analysis in north-eastern Italy. Parasites and Vectors, 2012, 5, 61.	2.5	74
7	Distribution and habitat characterization of the recently introduced invasive mosquito Aedes koreicus [Hulecoeteomyia koreica], a new potential vector and pest in north-eastern Italy. Parasites and Vectors, 2013, 6, 292.	2.5	69
8	Molecular xenomonitoring of Dirofilaria immitis and Dirofilaria repens in mosquitoes from north-eastern Italy by real-time PCR coupled with melting curve analysis. Parasites and Vectors, 2012, 5, 76.	2.5	57
9	The new European invader <i>Aedes</i> (<i>Finlaya</i>) <i>koreicus</i> : a potential vector of chikungunya virus. Pathogens and Global Health, 2018, 112, 107-114.	2.3	55
10	Development of Dirofilaria immitis and Dirofilaria repens in Aedes japonicus and Aedes geniculatus. Parasites and Vectors, 2017, 10, 94.	2.5	54
11	First autochthonous dengue outbreak in Italy, August 2020. Eurosurveillance, 2020, 25, .	7.0	53
12	Current distribution of the invasive mosquito species, Aedes koreicus [Hulecoeteomyia koreica] in northern Italy. Parasites and Vectors, 2015, 8, 614.	2.5	51
13	First assessment of potential distribution and dispersal capacity of the emerging invasive mosquito Aedes koreicus in Northeast Italy. Parasites and Vectors, 2016, 9, 63.	2.5	51
14	Clinical and virological findings in patients with Usutu virus infection, northern Italy, 2018. Eurosurveillance, 2019, 24, .	7.0	48
15	Experimental studies on comparison of the vector competence of four Italian Culex pipiens populations for West Nile virus. Parasites and Vectors, 2015, 8, 463.	2.5	39
16	First record of the Asian bush mosquito, Aedes japonicus japonicus, in Italy: invasion from an established Austrian population. Parasites and Vectors, 2016, 9, 284.	2.5	37
17	First report outside Eastern Europe of West Nile virus lineage 2 related to the Volgograd 2007 strain, northeastern Italy, 2014. Parasites and Vectors, 2015, 8, 418.	2.5	36
18	Potential Risk of Dengue and Chikungunya Outbreaks in Northern Italy Based on a Population Model of Aedes albopictus (Diptera: Culicidae). PLoS Neglected Tropical Diseases, 2016, 10, e0004762.	3.0	34

#	Article	IF	Citations
19	Human and entomological surveillance of West Nile fever, dengue and chikungunya in Veneto Region, Italy, 2010-2012. BMC Infectious Diseases, 2014, 14, 60.	2.9	33
20	The invasive mosquito Aedes japonicus japonicus is spreading in northeastern Italy. Parasites and Vectors, 2019, 12, 120.	2.5	32
21	Autochthonous dengue outbreak in Italy 2020: clinical, virological and entomological findings. Journal of Travel Medicine, 2021, 28, .	3.0	31
22	West Nile virus transmission and human infection risk in Veneto (Italy): a modelling analysis. Scientific Reports, 2018, 8, 14005.	3.3	30
23	Surveillance for West Nile, Dengue, and Chikungunya Virus Infections, Veneto Region, Italy, 2010. Emerging Infectious Diseases, 2012, 18, 671-3.	4.3	29
24	Non-imported malaria in Italy: paradigmatic approaches and public health implications following an unusual cluster of cases in 2017. BMC Public Health, 2020, 20, 857.	2.9	24
25	New incursions of West Nile virus lineage 2 in Italy in 2013: the value of the entomological surveillance as early warning system. Veterinaria Italiana, 2013, 49, 315-9.	0.5	24
26	Determinants of the population growth of the West Nile virus mosquito vector Culex pipiens in a repeatedly affected area in Italy. Parasites and Vectors, 2014, 7, 26.	2.5	23
27	Human West Nile Virus Lineage 2 Infection: Epidemiological, Clinical, and Virological Findings. Viruses, 2020, 12, 458.	3.3	22
28	Updated occurrence and bionomics of potential malaria vectors in Europe: a systematic review (2000–2021). Parasites and Vectors, 2022, 15, 88.	2.5	21
29	First report of the influence of temperature on the bionomics and population dynamics of Aedes koreicus, a new invasive alien species in Europe. Parasites and Vectors, 2019, 12, 524.	2,5	20
30	Weak Larval Competition Between Two Invasive Mosquitoes Aedes koreicus and Aedes albopictus (Diptera: Culicidae). Journal of Medical Entomology, 2017, 54, 1266-1272.	1.8	19
31	IgG Antibody Responses to the Aedes albopictus 34k2 Salivary Protein as Novel Candidate Marker of Human Exposure to the Tiger Mosquito. Frontiers in Cellular and Infection Microbiology, 2020, 10, 377.	3.9	18
32	Mapping of Aedes albopictus Abundance at a Local Scale in Italy. Remote Sensing, 2017, 9, 749.	4.0	17
33	Seasonal and Daily Activity Patterns of Mosquito (Diptera: Culicidae) Vectors of Pathogens in Northeastern Italy. Journal of Medical Entomology, 2015, 52, 56-62.	1.8	16
34	Laboratory colonization of the European invasive mosquito Aedes (Finlaya) koreicus. Parasites and Vectors, 2017, 10, 74.	2.5	15
35	The common European mosquitoes Culex pipiens and Aedes albopictus are unable to transmit SARS-CoV-2 after a natural-mimicking challenge with infected blood. Parasites and Vectors, 2021, 14, 76.	2.5	14
36	Mosquitoes of the Maculipennis complex in Northern Italy. Scientific Reports, 2021, 11, 6421.	3.3	13

#	Article	IF	CITATIONS
37	Assessing the distribution of invasive Asian mosquitoes in Northern Italy and modelling the potential spread of Aedes koreicus in Europe. Acta Tropica, 2022, 232, 106536.	2.0	13
38	Phylogenomics Reveals that <i> Asaia </i> Symbionts from Insects Underwent Convergent Genome Reduction, Preserving an Insecticide-Degrading Gene. MBio, 2021, 12, .	4.1	10
39	Inter-annual variability of the effects of intrinsic and extrinsic drivers affecting West Nile virus vector Culex pipiens population dynamics in northeastern Italy. Parasites and Vectors, 2020, 13, 271.	2.5	9
40	Further evidence of lineage 2 West Nile Virus in Culex pipiens of North-Eastern Italy. Veterinaria Italiana, 2013, 49, 263-8.	0.5	8
41	Wolbachia in Aedes koreicus: Rare Detections and Possible Implications. Insects, 2022, 13, 216.	2.2	8
42	Comparative efficacy of BG-Sentinel 2 and CDC-like mosquito traps for monitoring potential malaria vectors in Europe. Parasites and Vectors, 2022, 15, 160.	2.5	4
43	Mosquitoes (Culicidae). , 2020, , .		0