## Roy Carl Sidle

## List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/4791317/publications.pdf
Version: 2024-02-01

| $\begin{gathered} 148 \\ \text { papers } \end{gathered}$ | $9,433$ <br> citations | $\begin{array}{cc} 49258 \\ & 49 \\ \text { h-index } \end{array}$ | 40881 <br> 93 <br> g-index |
| :---: | :---: | :---: | :---: |
| $\begin{gathered} 153 \\ \text { all docs } \end{gathered}$ | $153$ <br> docs citations | $\begin{gathered} 153 \\ \text { times ranked } \end{gathered}$ | $\begin{gathered} 6905 \\ \text { citing authors } \end{gathered}$ |


| 1 | Understanding Processes and Downstream Linkages of Headwater Systems. BioScience, 2002, 52, 905. | 2.2 | 622 |
| :---: | :---: | :---: | :---: |
| 2 | A Distributed Slope Stability Model for Steep Forested Basins. Water Resources Research, 1995, 31, 2097-2110. | 1.7 | 544 |
| 3 | Desirable plant root traits for protecting natural and engineered slopes against landslides. Plant and Soil, 2009, 324, 1-30. | 1.8 | 513 |
| 4 | Erosion processes in steep terrainâ $€$ "Truths, myths, and uncertainties related to forest management in Southeast Asia. Forest Ecology and Management, 2006, 224, 199-225. | 1.4 | 459 |
| 5 | Stormflow generation in steep forested headwaters: a linked hydrogeomorphic paradigm. Hydrological Processes, 2000, 14, 369-385. | 1.1 | 417 |
| 6 | The Influence of Plant Root Systems on Subsurface Flow: Implications for Slope Stability. BioScience, 2011, 61, 869-879. | 2.2 | 351 |
| 7 | A conceptual model of preferential flow systems in forested hillslopes: evidence of self-organization. Hydrological Processes, 2001, 15, 1675-1692. | 1.1 | 270 |
| 8 | Morphological Characteristics of Macropores and the Distribution of Preferential Flow Pathways in a Forested Slope Segment. Soil Science Society of America Journal, 1999, 63, 1413-1423. | 1.2 | 202 |
| 9 | Dynamic earth system and ecological controls of rainfall-initiated landslides. Earth-Science Reviews, 2016, 159, 275-291. | 4.0 | 192 |
| 10 | Flow and solute transport through the soil matrix and macropores of a hillslope segment. Water Resources Research, 1994, 30, 879-890. | 1.7 | 189 |
| 11 | A theoretical model of the effects of timber harvesting on slope stability. Water Resources Research, 1992, 28, 1897-1910. | 1.7 | 175 |
| 12 | Effects of forest harvesting on the occurrence of landslides and debris flows in steep terrain of central Japan. Earth Surface Processes and Landforms, 2008, 33, 827-840. | 1.2 | 150 |
| 13 | Sediment pathways in a tropical forest: effects of logging roads and skid trails. Hydrological Processes, 2004, 18, 703-720. | 1.1 | 149 |

Characteristics of channel steps and reach morphology in headwater streams, southeast Alaska.
Geomorphology, 2003, 51, 225-242.
Runoff responses to forest thinning at plot and catchment scales in a headwater catchment draining
Japanese cypress forest. Journal of Hydrology, 2012, 444-445, 51-62.

$26 \quad$| The characteristics of woody debris and sediment distribution in headwater streams, southeastern |
| :--- |
| Alaska. Canadian Journal of Forest Research, 2001, 31, 1386-1399. |


$27 \quad$| Characteristics of overland flow generation on steep forested hillslopes of central Japan. Journal of |
| :--- |
| Hydrology, 2008, 361, 275-290. |

28 An overview of the field and modelling studies on the effects of forest devastation on flooding and environmental issues. Hydrological Processes, 2010, 24, 527-534.
29 Soil conditio Soil conditions in three recent landslides in Southeast Alaska. Forest Ecology and Management, 1987,
$1.4 \quad 79$
$\begin{array}{ll}30 \quad \text { Distributed sim } \\ & 18,757-776 .\end{array}$
1.1781.479
Sediment and wood accumulations in humid tropical headwater streams: Effects of logging and
riparian buffers. Forest Ecology and Management, 2006, 224, 166-175. 1.4 ..... 75 riparian buffers. Forest Ecology and Management, 2006, 224, 166-175.Hydrogeomorphic processes in a steep debris flow initiation zone. Geophysical Research Letters, 2006,1.574
33, n/a-n/a.
Reductions in water, soil and nutrient losses and pesticide pollution in agroforestry practices: a 33 review of evidence and processes. Plant and Soil, 2020, 453, 45-86.1.870
37
38

Assessment of UAV and Ground-Based Structure from Motion with Multi-View Stereo
37 Photogrammetry in a Cullied Savanna Catchment. ISPRS International Journal of Geo-Information,
1.4

65
2017, 6, 328.

Spatially Distributed Morphological Characteristics of Macropores in Forest Soils of Hitachi Ohta
Experimental Watershed, Japan. Journal of Forest Research, 1997, 2, 207-215.
0.7

63

39 Hydrogeomorphology: overview of an emerging science. Hydrological Processes, 2004, 18, $597-$
1.1

61

Hydrological Processes, 2006, 20, 1439-1445.
1.1

60

41 Preferential flow mechanisms identified from staining experiments in forested hillslopes
Hydrological Processes, 2015, 29, 4562-4578.
1.1

Hydrogeomorphic linkages of sediment transport in headwater streams, Maybeso Experimental Forest,
southeast Alaska. Hydrological Processes, 2004, 18, 667-683.
1.1

Impacts of logging disturbance on hillslope saturated hydraulic conductivity in a tropical forest in
Peninsular Malaysia. Catena, 2006, 67, 89-104.
2.2

56

Evaluation of storm runoff pathways in steep nested catchments draining a Japanese cypress forest in central Japan: a geochemical approach. Hydrological Processes, 2010, 24, 550-566.
1.1

56
Bed load transport in managed steep-gradient headwater streams of southeastern Alaska. Water
Resources Research, 2003,39, ( Broader perspective on ecosystem sustainability: Consequences for decision making. Proceedings

Monitored and simulated variations in matric suction during rainfall in a residual soil slope.
Environmental Geology, 2008, 55, 951-961.
1.2

50

Shallow lateral flow from a forested hillslope: Influence of antecedent wetness. Catena, 2005, 60,
49 293-306.
2.2

49

50 Landslides and debris flows strike Kyushu, Japan. Eos, 2004, 85, 145.
0.1

48

51 Earthquake-induced displacements of gravity retaining walls and anchor-reinforced slopes. Soil
Dynamics and Earthquake Engineering, 2009, 29, 428-437.
1.9

47

Internal Erosion during Soil Pipeflow: State of the Science for Experimental and Numerical Analysis.
1.1

47

[^0]55 Contemporary changes in open water surface area of Lake Inle, Myanmar. Sustainability Science, 2007,
2,55-65.

Unprecedented rates of landslide and surface erosion along a newly constructed road in Yunnan, China. Natural Hazards, 2011, 57, 313-326.
1.6

43

Rainfall-Runoff Modelling Using Hydrological Connectivity Index and Artificial Neural Network
1.2

Approach. Water (Switzerland), 2019, 11, 212.

Simulating effects of timber harvesting on the temporal and spatial distribution of shallow
landslides. Zeitschrift FÃ¹/4r Geomorphologie, 1999, 43, 185-201.
0.3

42

Pore water pressure assessment in a forest watershed: Simulations and distributed field
measurements related to forest practices. Water Resources Research, 2004, 40, .
$1.7 \quad 41$

Using remote sensing and traditional ecological knowledge (TEK) to understand mangrove change on
the Maroochy River, Queensland, Australia. Applied Geography, 2018, 94, 71-83.
1.7

35

61 Spatial pattern of infiltration rate and its effect on hydrological processes in a small headwater
catchment. Hydrological Processes, 2010, 24, 535-549.
$1.1 \quad 34$

62 Effect of forest harvesting on hydrogeomorphic processes in steep terrain of central Japan.
Geomorphology, 2012, 169-170, 109-122.

Linking hydrological connectivity to gully erosion in savanna rangelands tributary to the Great
63 Barrier Reef using structureâ€fromâ€motion photogrammetry. Land Degradation and Development, 2020,
1.8

31, 20-36.
Reduction of Stream Sediment Concentration by a Riparian Buffer: Filtering of Road Runoff in
64 Disturbed Headwater Basins of Montane Mainland Southeast Asia. Journal of Environmental Quality,
1.0

32
2006, 35, 151-162.

## 65 PATTERNS OF SUSPENDED SEDIMENT TRANSPORT IN A COASTAL ALASKA STREAM. Journal of the American <br> 65 Water Resources Association, 1985, 21, 909-917.

Development of a simple lateral preferential flow model with steady state application in hillslope soils. Water Resources Research, 2005, 41, .
1.7

31
Disturbances structuring macroinvertebrate communities in steep headwater streams: relative
67 importance of forest clearcutting and debris flow occurrence. Canadian Journal of Fisheries and
$0.7 \quad 29$
Aquatic Sciences, 2010, 67, 427-444.
68 Hydrogeomorphic processes affecting dryland gully erosion: Implications for modelling. Progress in Physical Geography, 2019, 43, 46-64.
1.4

29
69 Fate of Heavy Metals in an Abandoned Leadâ€Zinc Tailings Pond: II. Sediment. Journal of Environmental
69 Quality, 1991, 20, 752-758.
1.0

27

Throughflow variability during snowmelt in a forested mountain catchment, coastal British
1.1

27
Columbia, Canada. Hydrological Processes, 2004, 18, 1219-1236.

Stream Channel Changes Associated with Mining and Grazing in the Great Basin. Journal of
1.0

25
Stream Channel Changes Associated with Min
Environmental Quality, 1996, 25, 1111-1121.

Effective slope lengths for buffering hillslope surface runoff in fragmented landscapes in northern

74 Application of Decision Analysis to Forest Road Deactivation in Unstable Terrain. Environmental
77 Tropical forest structure and understorey determine subsurface flow through biopores formed by plant roots. Catena, 2019, 181, 104061.78 Characterisation of Hydrological Response to Rainfall at Multi Spatio-Temporal Scales in Savannas ofSemi-Arid Australia. Water (Switzerland), 2017, 9, 540.
Root Biomechanical Traits in a Montane Mediterranean Forest Watershed: Variations with Species $79 \quad \begin{aligned} & \text { Root Biomechanical Traits in a Montane Mediterr } \\ & \text { Diversity and Soil Depth. Forests, 2019, 10, } 341 .\end{aligned}$Catchment processes in Southeast Asia: Atmospheric, hydrologic, erosion, nutrient cycling, andmanagement effects. Forest Ecology and Management, 2006, 224, 1-4.
81 Effect of reduced grazing pressure on sediment and nutrient yields in savanna rangeland streams draining to the Great Barrier Reef. Journal of Hydrology, 2020, 582, 124520.
Mechanical traits of fine roots as a function of topology and anatomy. Annals of Botany, 2018, 122,
83 Criteria for selecting fluorescent dye tracers for soil hydrological applications using Uranine as an example. Journal of Hydrology and Hydromechanics, 2013, 61, 313-325.$2.2 \quad 24$$0.9 \quad 23$$1.4 \quad 22$2.3221.421Temporal and spatial variation of infilling processes in a landslide scar in a steep mountainous region,84 Japan. Earth Surface Processes and Landforms, 2015, 40, 642-653.
1.2 ..... 20
85 Strategies for smarter catchment hydrology models: incorporating scaling and better process representation. Geoscience Letters, 2021,8, .1.319Evaluation of planting sites common to a southeast Alaska clear-cut. II. Available inoculum of theEvaluation of planting sites common to a southeast Alaska clear-cut. III. Effects of microsite type and87 ectomycorrhizal inoculation on growth and survival of Sitka spruce seedlings. Canadian Journal of

98 Erosion Processes on Arid Minespoil Slopes. Soil Science Society of America Journal, 1993, 57, 1341-1347.

| 109 | The continuum of chronic to episodic natural hazards: Implications and strategies for community and <br> landscape planning. Landscape and Urban Planning, 2017, 167, 189-197. |
| :--- | :--- |
| 110 | Site Damage from Mechanized Thinning in Southeast Alaska. Northern Journal of Applied Forestry, <br> 1986, 3, 94-97. |

Elephant Trail Runoff and Sediment Dynamics in Northern Thailand. Journal of Environmental Quality, 2010, 39, 871-881.

Characteristics of landslides in forests and grasslands triggered by the 2016 Kumamoto earthquake. Earth Surface Processes and Landforms, 2020, 45, 893-904.

PREDICTION OF PEAK FLOWS ON SMALL WATERSHEDS IN OREGON FOR USE IN CULVERT DESIGN. Journal of the American Water Resources Association, 1984, 20, 9-14.

Modeling runoff dynamics from zero-order basins: implications for hydrological pathways.
Hydrological Research Letters, 2011, 5, 6-10.

Evaluation of the temporal and spatial impacts of timber harvesting on landslide occurrence. Water
Science and Application, 2001, , 179-193.

Variation in soil characteristics and hydrologic properties associated with historic land use near a recent landslide, Nagano Prefecture, Japan. Geoderma, 2009, 153, 37-51.

Observation of the Dynamics and Horizontal Dispersion in a Shallow Intermittently Closed and Open Lake and Lagoon (ICOLL). Water (Switzerland), 2018, 10, 776.
1.2

7

119 Using Weather and Climate Information for Landslide Prevention and Mitigation. , 2007, , 285-307.

Ectomycorrhizal Inoculation Fails to Improve Performance of Sitka Spruce Seedlings on Clearcuts in
120 Southeastern Alaska. Western Journal of Applied Forestry, 1988, 3, 110-112.
0.5

6

Hydrogeomorphic Processes in Temperate and Tropical Forests: Effects of Land Use and Scale.
Geography Compass, 2010, 4, 1115-1132.

Distribution of amphipods (<i>Gammarus nipponensis</i> Ueno) among mountain headwater streams with different legacies of debris flow occurrence. Ecohydrology, 2013, 6, 117-124.
1.1

6

Dark Clouds over the Silk Road: Challenges Facing Mountain Environments in Central Asia. Sustainability, 2020, 12, 9467.

Assessment of an ensemble-based data assimilation system for a shallow estuary. Estuarine, Coastal and Shelf Science, 2021, 257, 107389.

Topographic features and stratified soil characteristics of a hillslope with fissures formed by the 2016 Kumamoto earthquake. Geoderma, 2020, 376, 114547.
2.3

4

Progress Towards Understanding Stormflow Generation in Headwater Catchments. Forestry
$129 \begin{aligned} & \text { Progress Towards Understa } \\ & \text { Sciences, 1998, , 483-498. }\end{aligned}$
$0.4 \quad 4$

Drought Tolerant Varieties of Common Beans (Phaseolus vulgaris) in Central Afghanistan. Agronomy,
1.3

4
$130 \quad \begin{aligned} & \text { Drought Tolerant } \\ & 2021,11,2181 .\end{aligned}$
A PROGRAM TO CALCULATE CHANNEL SCOUR AND FILL. Journal of the American Water Resources
Association, 1989, 25, 733-741.

RUNOFF AND EROSION RESPONSE OF SIMULATED WASTE BURIAL COVERS IN A SEMI-ARID ENVIRONMENT1. Journal of the American Water Resources Association, 1999, 35, 441-455.
1.0

Comments on â€œPredicting Soil Erosion for Alternative Land Usesâ€bby E. Wang, C. Xin, J.R. Williams, and
C. Xu. J. Environ. Qual. 35:459-467 (2006). Journal of Environmental Quality, 2006, 35, 2435-2438.
1.0

3
133

134 Towards better design and management of tsunami evacuation routes: a case study of Ao Jak Beach
Road. Geological Society Special Publication, 2012, 361, 107-114.
$0.8 \quad 3$

Analysis of Overland Flow Generation and Catchment Storm Runoff Using a Distributed Runoff Model
135 in a Headwater Catchment Draining Japanese Cypress Forest. Journal of the Japanese Forest Society, 2013, 95, 23-31.
0.1

3

Unraveling the Dynamics of a Creeping Slope in Northwestern Colombia: Hydrological Variables, and Geoelectrical and Seismic Signatures. Water (Switzerland), 2018, 10, 1498.
1.2

3
136

Geomorphic hazards in southâ€west Saudi Arabia: The humanâ€"environmental nexus. Area, 2019, 51,
670-680.
$1.0 \quad 3$

138 Linking Soil Hydrology and Creep: A Northern Andes Case. Geosciences (Switzerland), 2020, 10, 472.
1.0

3

139 Stormflow generation in steep forested headwaters: a linked hydrogeomorphic paradigm.
$1.1 \quad 3$
Hydrological Processes, 2000, 14, 369-385.

140 Discussion<sup> 1 </sup >. Journal of the American Water Resources Association, 2008, 44, 1055-1061.
$1.0 \quad 2$

141 Intrastorm Fluctuations of Piezometric Head and Soil Temperature within a Steep Forested Hollow.
$0.4 \quad 2$
Forestry Sciences, 1998, 475-482.

GEOMORPHIC AND PEDOLOGIC INFLUENCE ON SMALL-SCALE EPHEMERAL CHANNEL DIMENSION IN RANGELANDS. Journal of the American Water Resources Association, 1995, 31, 1051-1062.


[^0]:    Turbidity-based sediment monitoring in northern Thailand: Hysteresis, variability, and uncertainty.
    Journal of Hydrology, 2014, 519, 2020-2039.

