Ramaraja P Ramasamy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4791216/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Cationic Magnesium-Based Dithiolene Radical. Organometallics, 2022, 41, 527-531.	2.3	0
2	Electrochemical Biosensor for Rapid Detection of Listeria monocytogenes. Journal of the Electrochemical Society, 2022, 169, 067510.	2.9	7
3	A multifunctional polymeric coating incorporating lawsone with corrosion resistance and antibacterial activity for biomedical Mg alloys. Progress in Organic Coatings, 2021, 153, 106157.	3.9	25
4	A Bacteriophage-Based Electrochemical Biosensor for Detection of Methicillin-Resistant Staphylococcus aureus. Journal of the Electrochemical Society, 2021, 168, 057523.	2.9	15
5	Cellulose nanocrystal reinforced silk fibroin coating for enhanced corrosion protection and biocompatibility of Mg-based alloys for orthopedic implant applications. Progress in Organic Coatings, 2021, 161, 106525.	3.9	11
6	Graphene-based Electrochemical Biosensor for Impedimetric Detection of miRNAs as Potential Cancer Biomarkers. Journal of the Electrochemical Society, 2020, 167, 167523.	2.9	14
7	Non-Covalent Functionalization of Carbon Nanotubes for Electrochemical Biosensor Development. Sensors, 2019, 19, 392.	3.8	204
8	Electrochemical characterization of aromatic corrosion inhibitors from plant extracts. Journal of Electroanalytical Chemistry, 2019, 840, 74-83.	3.8	37
9	Synthesis and characterization of polyaniline nanofibers as cathode active material for sodium-ion battery. Journal of Applied Electrochemistry, 2019, 49, 529-537.	2.9	19
10	Isolation and separation of Listeria monocytogenes using bacteriophage P100-modified magnetic particles. Colloids and Surfaces B: Biointerfaces, 2019, 175, 421-427.	5.0	21
11	Improved stability of multicopper oxidase–carbon nanotube conjugates using a thermophilic laccase. Catalysis Science and Technology, 2018, 8, 1272-1276.	4.1	11
12	Role of respiratory terminal oxidases in the extracellular electron transfer ability of cyanobacteria. Biotechnology and Bioengineering, 2018, 115, 1361-1366.	3.3	19
13	Communication—Direct Detection of Methyl Salicylate Using Tri-Enzyme Based Electrochemical Sensor. Journal of the Electrochemical Society, 2018, 165, B358-B360.	2.9	6
14	Electro-Kinetic Study of Oxygen Reduction Reaction Catalyzed by Thermophilic Laccase. Journal of the Electrochemical Society, 2018, 165, H652-H657.	2.9	5
15	Electricity generation by Pyrococcus furiosus in microbial fuel cells operated at 90°C. Biotechnology and Bioengineering, 2017, 114, 1419-1427.	3.3	21
16	Charge-Directed Immobilization of Bacteriophage on Nanostructured Electrode for Whole-Cell Electrochemical Biosensors. Analytical Chemistry, 2017, 89, 5734-5741.	6.5	105
17	Enhanced photoâ€bioelectrochemical energy conversion by genetically engineered cyanobacteria. Biotechnology and Bioengineering, 2016, 113, 675-679.	3.3	95
18	Detection of methyl salicylate using bi-enzyme electrochemical sensor consisting salicylate hydroxylase and tyrosinase. Biosensors and Bioelectronics, 2016, 85, 603-610.	10.1	36

#	Article	IF	CITATIONS
19	Detection of p-Ethylphenol, a Major Plant Volatile Organic Compound, by Tyrosinase-Based Electrochemical Biosensor. ECS Journal of Solid State Science and Technology, 2016, 5, M3054-M3059.	1.8	17
20	A novel bi-enzyme electrochemical biosensor for selective and sensitive determination of methyl salicylate. Biosensors and Bioelectronics, 2016, 81, 39-45.	10.1	42
21	Current and Prospective Methods for Plant Disease Detection. Biosensors, 2015, 5, 537-561.	4.7	450
22	Laccase-TiO ₂ Nanoconjugates as Catalysts for Oxygen Reduction Reaction in Biocathodes. Journal of the Electrochemical Society, 2015, 162, H911-H917.	2.9	14
23	Recent advances in photosynthetic energy conversion. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015, 22, 19-33.	11.6	95
24	Three Dimensional Carbon Nanosheets as a Novel Catalyst Support for Enzymatic Bioelectrodes. Advanced Energy Materials, 2014, 4, 1301306.	19.5	29
25	Enhanced Electron Transfer in Enzymatic Bioelectrodes by a Poly(vinyl alcohol) <i>N</i> â€Methylâ€4(4′â€formylstyryl) Pyridinium Methosulfate Acetal Cationic Polymer. ChemElectroChem, 2014, 1, 1834-1839.	3.4	8
26	Photocurrent generation by immobilized cyanobacteria via direct electron transport in photo-bioelectrochemical cells. Physical Chemistry Chemical Physics, 2014, 16, 7862.	2.8	151
27	Electrochemical detection of p-ethylguaiacol, a fungi infected fruit volatile using metal oxide nanoparticles. Analyst, The, 2014, 139, 3804-3810.	3.5	85
28	Highly sensitive electrochemical detection of methyl salicylate using electroactive gold nanoparticles. Analyst, The, 2013, 138, 6623.	3.5	23
29	On the bio-electrocatalytic activity of tyrosinase for oxygen reduction reaction. Catalysis Science and Technology, 2013, 3, 2546.	4.1	11
30	High photo-electrochemical activity of thylakoid–carbon nanotube composites for photosynthetic energy conversion. Energy and Environmental Science, 2013, 6, 1891.	30.8	173
31	Electroanalytical studies on green leaf volatiles for potential sensor development. Analyst, The, 2012, 137, 3138.	3.5	11
32	A study of the flavin response by Shewanella cultures in carbon-limited environments. RSC Advances, 2012, 2, 10020.	3.6	18
33	Kinetic and Mechanistic Parameters of Laccase Catalyzed Direct Electrochemical Oxygen Reduction Reaction. ACS Catalysis, 2012, 2, 38-44.	11.2	93
34	Designing Si-based nanowall arrays by dynamic shadowing growth to tailor the performance of Li-ion battery anodes. Journal of Materials Chemistry, 2012, 22, 8294.	6.7	19
35	Design of Carbon Nanotubeâ€Based Gasâ€Diffusion Cathode for O ₂ Reduction by Multicopper Oxidases. Advanced Energy Materials, 2012, 2, 162-168.	19.5	74
36	High electrocatalytic activity of tethered multicopper oxidase–carbon nanotube conjugates. Chemical Communications, 2010, 46, 6045.	4.1	137

#	Article	IF	CITATIONS
37	Impedance spectroscopy as a tool for nonâ€intrusive detection of extracellular mediators in microbial fuel cells. Biotechnology and Bioengineering, 2009, 104, 882-891.	3.3	82