Naresh Magan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4790352/publications.pdf

Version: 2024-02-01

379 papers 16,075 citations

67 h-index 30922 102 g-index

386 all docs

386 docs citations

386 times ranked 9990 citing authors

#	Article	IF	CITATIONS
1	Post-harvest control strategies: Minimizing mycotoxins in the food chain. International Journal of Food Microbiology, 2007, 119, 131-139.	4.7	474
2	Electronic noses and disease diagnostics. Nature Reviews Microbiology, 2004, 2, 161-166.	28.6	363
3	Possible climateâ€change effects on mycotoxin contamination of food crops pre―and postharvest. Plant Pathology, 2011, 60, 150-163.	2.4	282
4	Volatiles as an indicator of fungal activity and differentiation between species, and the potential use of electronic nose technology for early detection of grain spoilage. Journal of Stored Products Research, 2000, 36, 319-340.	2.6	242
5	Post-Harvest Fungal Ecology: Impact of Fungal Growth and Mycotoxin Accumulation in Stored Grain. European Journal of Plant Pathology, 2003, 109, 723-730.	1.7	227
6	Studies on Aspergillus section Flavi isolated from maize in northern Italy. International Journal of Food Microbiology, 2007, 113, 330-338.	4.7	207
7	Effect of temperature and pH on water relations of field and storage fungi. Transactions of the British Mycological Society, 1984, 82, 71-81.	0.6	184
8	Effect of climate change on Aspergillus flavus and aflatoxin B1 production. Frontiers in Microbiology, 2014, 5, 348.	3.5	181
9	Effect of water activity, temperature and substrate on interactions between field and storage fungi. Transactions of the British Mycological Society, 1984, 82, 83-93.	0.6	179
10	Climate change, food security and mycotoxins: DoÂwe know enough?. Fungal Biology Reviews, 2017, 31, 143-154.	4.7	177
11	Water activity, temperature, and pH effects on growth of <i>Fusarium moniliforme</i> and <i>Fusarium proliferatum</i> isolates from maize. Canadian Journal of Microbiology, 1995, 41, 1063-1070.	1.7	172
12	Stress induction of mycotoxin biosynthesis genes by abiotic factors. FEMS Microbiology Letters, 2008, 284, 142-149.	1.8	165
13	<i>Alternaria</i> in Food: Ecophysiology, Mycotoxin Production and Toxicology. Mycobiology, 2015, 43, 93-106.	1.7	159
14	Water and temperature relations of growth and ochratoxin A production by Aspergillus carbonarius strains from grapes in Europe and Israel. Journal of Applied Microbiology, 2004, 97, 439-445.	3.1	157
15	Culture Age, Temperature, and pH Affect the Polyol and Trehalose Contents of Fungal Propagules. Applied and Environmental Microbiology, 1996, 62, 2435-2442.	3.1	152
16	European research on ochratoxin A in grapes and wine. International Journal of Food Microbiology, 2006, 111, S2-S4.	4.7	151
17	Relationship Between Growth and Mycotoxin Production by Fusarium species, Biocides and Environment. European Journal of Plant Pathology, 2002, 108, 685-690.	1.7	147
18	Manipulation of intracellular glycerol and erythritol enhances germination of conidia at low water availability. Microbiology (United Kingdom), 1995, 141, 1109-1115.	1.8	146

#	Article	IF	CITATIONS
19	Complex regulation of the aflatoxin biosynthesis gene cluster of Aspergillus flavus in relation to various combinations of water activity and temperature. International Journal of Food Microbiology, 2009, 135, 231-237.	4.7	146
20	Comparison of environmental profiles for growth and deoxynivalenol production by Fusarium culmorum and F. graminearum on wheat grain. Letters in Applied Microbiology, 2005, 40, 295-300.	2.2	143
21	Use of an electronic nose system for diagnoses of urinary tract infections. Biosensors and Bioelectronics, 2002, 17, 893-899.	10.1	135
22	Environmental factors, in vitro interactions, and niche overlap between Fusarium moniliforme, F. proliferatum, and F. graminearum, Aspergillus and Penicillium species from maize grain. Mycological Research, 1998, 102, 831-837.	2.5	133
23	Water and Temperature Relations of Growth of the Entomogenous Fungi Beauveria bassiana, Metarhizium anisopliae, and Paecilomyces farinosus. Journal of Invertebrate Pathology, 1999, 74, 261-266.	3.2	130
24	Effect of the solvent on recognition properties of molecularly imprinted polymer specific for ochratoxin A. Biosensors and Bioelectronics, 2004, 20, 1060-1067.	10.1	130
25	Fumonisin-Producing Strains of Fusarium: A Review of Their Ecophysiology. Journal of Food Protection, 2004, 67, 1792-1805.	1.7	127
26	Detection of Mycobacterium tuberculosis (TB) in vitro and in situ using an electronic nose in combination with a neural network system. Biosensors and Bioelectronics, 2004, 20, 538-544.	10.1	124
27	Limiting mycotoxins in stored wheat. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2010, 27, 644-650.	2.3	123
28	Effect of water activity and temperature on growth and fumonisin $B < sub > 1 < / sub > and$ $B < sub > 2 < / sub > production by Fusarium proliferatum and F. moniliforme on maize grain. Letters in Applied Microbiology, 1995, 21, 298-301.$	2.2	121
29	A systems approach to model the relationship between aflatoxin gene cluster expression, environmental factors, growth and toxin production by <i>Aspergillus flavus</i> . Journal of the Royal Society Interface, 2012, 9, 757-767.	3.4	119
30	Effect of carbohydrate type and concentration on polyhydroxy alcohol and trehalose content of conidia of three entomopathogenic fungi. Microbiology (United Kingdom), 1994, 140, 2705-2713.	1.8	118
31	Milk-sense: a volatile sensing system recognises spoilage bacteria and yeasts in milk. Sensors and Actuators B: Chemical, 2001, 72, 28-34.	7.8	118
32	Ecological determinants for germination and growth of some Aspergillus and Penicillium spp. from maize grain. Journal of Applied Microbiology, 1998, 84, 25-36.	3.1	114
33	Temperature and water activity effects on growth and temporal deoxynivalenol production by two Argentinean strains of Fusarium graminearum on irradiated wheat grain. International Journal of Food Microbiology, 2006, 106, 291-296.	4.7	114
34	Water and temperature relations and microconidial germination of <i>Fusarium moniliforme</i> and <i>Fusarium proliferatum</i> from maize. Canadian Journal of Microbiology, 1996, 42, 1045-1050.	1.7	108
35	Water, temperature and gas composition interactions affect growth and ochratoxin A production by isolates of Penicillium verrucosum on wheat grain. Journal of Applied Microbiology, 2005, 99, 1215-1221.	3.1	107
36	The production of aflatoxin B1 or G1 by Aspergillus parasiticus at various combinations of temperature and water activity is related to the ratio of aflS to aflR expression. Mycotoxin Research, 2010, 26, 241-246.	2.3	105

#	Article	IF	Citations
37	Aspergillus species and mycotoxins: occurrence and importance in major food commodities. Current Opinion in Food Science, 2018, 23, 38-43.	8.0	103
38	Toxigenic Fungi and Mycotoxins in a Climate Change Scenario: Ecology, Genomics, Distribution, Prediction and Prevention of the Risk. Microorganisms, 2020, 8, 1496.	3.6	103
39	Relationship between Solute and Matric Potential Stress, Temperature, Growth, and <i>FUM1</i> Gene Expression in Two <i>Fusarium verticillioides</i> Strains from Spain. Applied and Environmental Microbiology, 2008, 74, 2032-2036.	3.1	101
40	Concomitant osmotic and chaotropicity-induced stresses in Aspergillus wentii: compatible solutes determine the biotic window. Current Genetics, 2015, 61, 457-477.	1.7	101
41	Effect of water activity and temperature on mycotoxin production by Alternaria alternata in culture and on wheat grain. Applied and Environmental Microbiology, 1984, 47, 1113-1117.	3.1	101
42	Climate change and mycotoxigenic fungi: impacts on mycotoxin production. Current Opinion in Food Science, 2015, 5, 99-104.	8.0	100
43	Conditions of formation of ochratoxin A in drying, transport and in different commodities. Food Additives and Contaminants, 2005, 22, 10-16.	2.0	96
44	Effects of gas composition and water activity on growth of field and storage fungi and their interactions. Transactions of the British Mycological Society, 1984, 82, 305-314.	0.6	93
45	Impact of environmental factors and fungicides on growth and deoxinivalenol production by Fusarium graminearum isolates from Argentinian wheat. Crop Protection, 2004, 23, 117-125.	2.1	93
46	Effect of water activity and temperature on growth and ochratoxin production by three strains of Aspergillus ochraceus on a barley extract medium and on barley grains. International Journal of Food Microbiology, 1998, 44, 133-140.	4.7	92
47	Detection and differentiation between mycotoxigenic and non-mycotoxigenic strains of two Fusarium spp. using volatile production profiles and hydrolytic enzymes. Journal of Applied Microbiology, 2000, 89, 825-833.	3.1	89
48	An intelligent rapid odour recognition model in discrimination of Helicobacter pylori and other gastroesophageal isolates in vitro. Biosensors and Bioelectronics, 2000, 15, 333-342.	10.1	89
49	Ecological determinants of mould growth in stored grain. International Journal of Food Microbiology, 1988, 7, 245-256.	4.7	86
50	Control of Blue Mold of Apples by Preharvest Application of Candida sake Grown in Media with Different Water Activity. Phytopathology, 1998, 88, 960-964.	2.2	85
51	Two-dimensional profiles of fumonisin B1 production by Fusarium moniliforme and Fusarium proliferatum in relation to environmental factors and potential for modelling toxin formation in maize grain. International Journal of Food Microbiology, 1999, 51, 159-167.	4.7	85
52	Evaluation of a radial basis function neural network for the determination of wheat quality from electronic nose data. Sensors and Actuators B: Chemical, 2000, 69, 348-358.	7.8	85
53	Climate change factors and Aspergillus flavus: effects on gene expression, growth and aflatoxin production. World Mycotoxin Journal, 2015, 8, 171-179.	1.4	85
54	Environmental conditions affecting mycotoxins. , 2004, , 174-189.		83

#	Article	IF	CITATIONS
55	Effect of aw and CO2 level on Aspergillus flavus growth and aflatoxin production in high moisture maize post-harvest. International Journal of Food Microbiology, 2008, 122, 109-113.	4.7	83
56	Impacts of environmental stress on growth, secondary metabolite biosynthetic gene clusters and metabolite production of xerotolerant/xerophilic fungi. Current Genetics, 2015, 61, 325-334.	1.7	83
57	Prevention strategies for trichothecenes. Toxicology Letters, 2004, 153, 165-171.	0.8	79
58	Mycotoxin contamination of food in Europe: Early detection and prevention strategies. Mycopathologia, 2006, 162, 245-253.	3.1	79
59	Trametes versicolor: Potential for atrazine bioremediation in calcareous clay soil, under low water availability conditions. International Biodeterioration and Biodegradation, 2009, 63, 389-394.	3.9	77
60	Interactions between water activity and temperature on the Aspergillus flavus transcriptome and aflatoxin B 1 production. International Journal of Food Microbiology, 2017, 256, 36-44.	4.7	77
61	Effects of KCl concentration on accumulation of acyclic sugar alcohols and trehalose in conidia of three entomopathogenic fungi. Letters in Applied Microbiology, 1994, 18, 8-11.	2.2	76
62	Environmental factors and weak organic acid interactions have differential effects on control of growth and ochratoxin A production by Penicillium verrucosum isolates in bread. International Journal of Food Microbiology, 2005, 98, 223-231.	4.7	76
63	Mapping of Aspergillus Section Nigri in Southern Europe and Israel based on geostatistical analysis. International Journal of Food Microbiology, 2006, 111, S72-S82.	4.7	76
64	Differential effect of environmental conditions on the growth and regulation of â€∫the fumonisin biosynthetic gene FUM1â€∫in the maize pathogens and fumonisin producers Fusarium verticillioides and Fusarium proliferatum. FEMS Microbiology Ecology, 2010, 73, no-no.	2.7	74
65	Environmental Factors and Bioremediation of Xenobiotics Using White Rot Fungi. Mycobiology, 2010, 38, 238.	1.7	74
66	Accumulation of the compatible solutes, glycine-betaine and ectoine, in osmotic stress adaptation and heat shock cross-protection in the biocontrol agent Pantoea agglomerans CPA-2. Letters in Applied Microbiology, 2005, 41, 248-252.	2.2	70
67	Physiological relationship between food preservatives, environmental factors, ochratoxin and otapksPV gene expression by Penicillium verrucosum. International Journal of Food Microbiology, 2007, 119, 277-283.	4.7	70
68	Early detection of spoilage moulds in bread using volatile production patterns and quantitative enzyme assays. Journal of Applied Microbiology, 2002, 92, 165-172.	3.1	69
69	Modelling the effect of temperature and water activity on growth of Aspergillus niger strains and applications for food spoilage moulds. Journal of Applied Microbiology, 2004, 97, 429-438.	3.1	69
70	Modelling the relationship between environmental factors, transcriptional genes and deoxynivalenol mycotoxin production by strains of two <i>Fusarium</i> species. Journal of the Royal Society Interface, 2011, 8, 117-126.	3.4	69
71	The influence of salt (NaCl) on ochratoxin A biosynthetic genes, growth and ochratoxin A production by three strains of Penicillium nordicum on a dry-cured ham-based medium. International Journal of Food Microbiology, 2014, 178, 113-119.	4.7	69
72	Use of an electronic nose for the early detection and differentiation between spoilage fungi. Letters in Applied Microbiology, 1998, 27, 261-264.	2.2	67

#	Article	IF	CITATIONS
73	Colonization of Maize Grain by Fusarium moniliforme and Fusarium proliferatum in the Presence of Competing Fungi and Their Impact on Fumonisin Production. Journal of Food Protection, 1998, 61, 1489-1496.	1.7	67
74	The fungal threat to global food security. Fungal Biology, 2019, 123, 555-557.	2.5	67
75	In vitro control of growth and fumonisin production by Fusarium verticillioides and F. proliferatum using antioxidants under different water availability and temperature regimes. Journal of Applied Microbiology, 2002, 92, 624-632.	3.1	66
76	Temperature and water activity effects on production of T-2 and HT-2 by Fusarium langsethiae strains from north European countries. Food Microbiology, 2011, 28, 392-398.	4.2	66
77	Effects of water potential and temperature on spore germination and germ-tube growth in vitro and on straw leaf sheaths. Transactions of the British Mycological Society, 1988, 90, 97-107.	0.6	65
78	Fumonisin B1 Production and Growth of Fusarium moniliforme and Fusarium proliferatum on Maize, Wheat, and Barley Grain. Journal of Food Science, 1999, 64, 921-924.	3.1	65
79	Control of the anthracnose pathogen of banana (Colletotrichum musae) using antioxidants alone and in combination with thiabendazole or imazalil. Plant Pathology, 2001, 50, 601-608.	2.4	64
80	Production of extracellular enzymes by different isolates of Pochonia chlamydosporia. Mycological Research, 2009, 113, 867-876.	2.5	64
81	Application of electronic nose technology for the detection of fungal contamination in library paper. International Biodeterioration and Biodegradation, 2004, 54, 303-309.	3.9	61
82	Ochratoxin A-producing fungi in Spanish wine grapes and their relationship with meteorological conditions. European Journal of Plant Pathology, 2005, 113, 233-239.	1.7	61
83	Post-harvest fungal ecology: Impact of fungal growth and mycotoxin accumulation in stored grain. , 2003, , 723-730.		61
84	Improving ecological fitness and environmental stress tolerance of the biocontrol yeast Candida sake by manipulation of intracellular sugar alcohol and sugar content. Mycological Research, 1998, 102, 1409-1417.	2.5	60
85	Recognition of anaerobic bacterial isolates in vitro using electronic nose technology. Letters in Applied Microbiology, 2002, 35, 366-369.	2.2	60
86	Comparison of different bead-beating RNA extraction strategies: An optimized method for filamentous fungi. Journal of Microbiological Methods, 2012, 88, 413-418.	1.6	60
87	Environmental factors affect efficacy of some essential oils and resveratrol to control growth and ochratoxin A production by Penicillium verrucosum and Aspergillus westerdijkiae on wheat grain. Journal of Stored Products Research, 2008, 44, 341-346.	2.6	59
88	Impact of Trametes versicolor and Phanerochaete chrysosporium on differential breakdown of pesticide mixtures in soil microcosms at two water potentials and associated respiration and enzyme activity. International Biodeterioration and Biodegradation, 2008, 62, 376-383.	3.9	58
89	Overview of Fungi and Mycotoxin Contamination in Capsicum Pepper and in Its Derivatives. Toxins, 2019, 11, 27.	3.4	58
90	Effect of water activity and temperature on competing abilities of common maize fungi. Mycological Research, 1998, 102, 959-964.	2.5	57

#	Article	IF	Citations
91	Two-dimensional environmental profiles of growth, deoxynivalenol and nivalenol production by Fusarium culmorum on a wheat-based substrate. Letters in Applied Microbiology, 2003, 37, 70-74.	2.2	57
92	Impact of osmotic and matric water stress on germination, growth, mycelial water potentials and endogenous accumulation of sugars and sugar alcohols in <i>Fusarium graminearum</i> . Mycologia, 2004, 96, 470-478.	1.9	57
93	Enzymatic activity, osmotic stress and degradation of pesticide mixtures in soil extract liquid broth inoculated with Phanerochaete chrysosporium and Trametes versicolor. Environmental Microbiology, 2005, 7, 348-355.	3.8	57
94	Temporal monitoring of the nor-1 (aflD) gene of Aspergillus flavus in relation to aflatoxin B1 production during storage of peanuts under different water activity levels. Journal of Applied Microbiology, 2010, 109, 1914-1922.	3.1	57
95	Long-term effects of land use and fertiliser treatments on sulphur transformations in soils from the Broadbalk experiment. Soil Biology and Biochemistry, 2001, 33, 1797-1804.	8.8	56
96	Osmotic and matric potential effects on growth, sugar alcohol and sugar accumulation by Aspergillus section Flavi strains from Argentina. Journal of Applied Microbiology, 2004, 96, 965-972.	3.1	53
97	Glycerol enhances fungal germination at the waterâ€activity limit for life. Environmental Microbiology, 2017, 19, 947-967.	3.8	52
98	The phylloplane microflora of ripening wheat and effect of late fungicide applications. Annals of Applied Biology, 1986, 109, 117-128.	2.5	51
99	Osmotic and matric potential effects on growth, sclerotia and partitioning of polyols and sugars in colonies and spores of Aspergillus ochraceus. Mycological Research, 1999, 103, 141-147.	2.5	51
100	Environmental Factors and Interactions with Mycobiota of Grain and Grapes: Effects on Growth, Deoxynivalenol and Ochratoxin Production by Fusarium culmorum and Aspergillus carbonarius. Toxins, 2010, 2, 353-366.	3.4	51
101	Potential use of antioxidants for control of growth and fumonisin production by Fusarium verticillioides and Fusarium proliferatum on whole maize grain. International Journal of Food Microbiology, 2003, 83, 319-324.	4.7	50
102	Environmental factors and nutritional utilization patterns affect niche overlap indices betweenAspergillus ochraceusand other spoilage fungi. Letters in Applied Microbiology, 1999, 28, 300-304.	2.2	49
103	Early detection and differentiation of spoilage of bakery products. Sensors and Actuators B: Chemical, 2005, 106, 20-23.	7.8	49
104	Comparisons of water activity and temperature impacts on growth of Fusarium langsethiae strains from northern Europe on oat-based media. International Journal of Food Microbiology, 2010, 142, 365-369.	4.7	49
105	Environmental stress and elicitors enhance taxol production by endophytic strains of Paraconiothyrium variabile and Epicoccum nigrum. Enzyme and Microbial Technology, 2016, 90, 69-75.	3.2	49
106	Ecophysiological responses of the biocontrol yeast Candida sake to water, temperature and pH stress. Journal of Applied Microbiology, 1998, 84, 192-200.	3.1	48
107	Impact of environment and interspecific interactions between spoilage fungi and Aspergillus ochraceus on growth and ochratoxin production in maize grain. International Journal of Food Microbiology, 2000, 61, 11-16.	4.7	48
108	Impact of mild heat treatments on induction of thermotolerance in the biocontrol yeast Candida sake CPA-1 and viability after spray-drying. Journal of Applied Microbiology, 2008, 104, 767-775.	3.1	48

#	Article	IF	CITATIONS
109	Control of Aflatoxin Production of Aspergillus flavus and Aspergillus parasiticus Using RNA Silencing Technology by Targeting aflD (nor-1) Gene. Toxins, 2011, 3, 647-659.	3.4	48
110	Biocontrol of mycotoxins: dynamics and mechanisms of action. Current Opinion in Food Science, 2017, 17, 41-48.	8.0	48
111	Impact of Fusarium moniliforme and F. proliferatum colonisation of maize on calorific losses and fumonisin production under different environmental conditions. Journal of Stored Products Research, 1999, 35, 15-26.	2.6	47
112	Effect of fenpropimorph, prochloraz and tebuconazole on growth and production of T-2 and HT-2 toxins by Fusarium langsethiae in oat-based medium. International Journal of Food Microbiology, 2011, 151, 289-298.	4.7	47
113	Interactions between field, and storage fungi on wheat grain. Transactions of the British Mycological Society, 1985, 85, 29-37.	0.6	46
114	Environmental factors modify carbon nutritional patterns and niche overlap between Aspergillus flavus and Fusarium verticillioides strains from maize. International Journal of Food Microbiology, 2009, 130, 213-218.	4.7	46
115	Effect of temperature and water activity on growth and ochratoxin A production boundaries of two <i>Aspergillus carbonarius</i> isolates on a simulated grape juice medium. Journal of Applied Microbiology, 2009, 107, 257-268.	3.1	46
116	Potential effects of environmental conditions on the efficiency of the antifungal tebuconazole controlling Fusarium verticillioides and Fusarium proliferatum growth rate and fumonisin biosynthesis. International Journal of Food Microbiology, 2013, 165, 251-258.	4.7	46
117	Relationship between ecophysiological factors, growth and ochratoxin A contamination of dry-cured sausage based matrices. International Journal of Food Microbiology, 2015, 194, 71-77.	4.7	46
118	Colonisation and competitiveness of Aspergillus and Penicillium species on maize grain in the presence of Fusarium moniliforme and Fusarium proliferatum. International Journal of Food Microbiology, 1998, 45, 107-117.	4.7	45
119	Surface hydrophobicity, viability and efficacy in biological control of Penicillium oxalicum spores produced in aerial and submerged culture. Journal of Applied Microbiology, 2000, 89, 847-853.	3.1	45
120	Integrating toxin gene expression, growth and fumonisin B $\langle sub \rangle 1 \langle sub \rangle$ and B $\langle sub \rangle 2 \langle sub \rangle$ production by a strain of $\langle i \rangle$ Fusarium verticillioides $\langle i \rangle$ under different environmental factors. Journal of the Royal Society Interface, 2013, 10, 20130320.	3.4	45
121	A rapid HPLC protocol for detection of polyols and trehalose. Journal of Microbiological Methods, 1997, 29, 7-13.	1.6	44
122	Medium optimization for the production of the secondary metabolite squalestatin S1 by a Phoma sp. combining orthogonal design and response surface methodology. Enzyme and Microbial Technology, 2005, 37, 704-711.	3.2	44
123	Potential of an electronic nose for the early detection and differentiation between Streptomyces in potable water. Sensors and Actuators B: Chemical, 2006, 116, 151-155.	7.8	44
124	Metal(loid)-Contaminated Soils as a Source of Culturable Heterotrophic Aerobic Bacteria for Remediation Applications. Geomicrobiology Journal, 2017, 34, 760-768.	2.0	44
125	Potential for detection of microorganisms and heavy metals in potable water using electronic nose technology. Biosensors and Bioelectronics, 2003, 18, 751-754.	10.1	43
126	Mycotoxigenic fungi in peanuts from different geographic regions of Egypt. Mycotoxin Research, 2010, 26, 133-140.	2.3	43

#	Article	IF	Citations
127	Use of itaconic acid-based polymers for solid-phase extraction of deoxynivalenol and application to pasta analysis. Analytica Chimica Acta, 2008, 609, 131-138.	5.4	42
128	Chryseobacterium palustre sp. nov. and Chryseobacterium humi sp. nov., isolated from industrially contaminated sediments. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 402-407.	1.7	42
129	Fusarium langsethiae: Storage environment influences dry matter losses and T2 and HT-2 toxin contamination of oats. Journal of Stored Products Research, 2011, 47, 321-327.	2.6	42
130	Some factors limiting the growth and yield of winter wheat and their variation in two seasons. Journal of Agricultural Science, 1985, 104, 135-162.	1.3	41
131	Relationship between environmental factors, dry matter loss and mycotoxin levels in stored wheat and maize infected with <i>Fusarium </i> species. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2012, 29, 1118-1128.	2.3	41
132	Isolation, identification, and ecology of growth and taxol production by an endophytic strain of Paraconiothyrium variabile from English yew trees (Taxus baccata). Fungal Biology, 2015, 119, 1022-1031.	2.5	41
133	Integrating gene expression, ecology and mycotoxin production by Fusarium and Aspergillus species in relation to interacting environmental factors. World Mycotoxin Journal, 2016, 9, 673-684.	1.4	41
134	Selective effect of propionates and water activity on maize mycoflora and impact on fumonisin B1 accumulation. Journal of Stored Products Research, 2000, 36, 203-214.	2.6	40
135	Electronic nose technology for the detection of microbial and chemical contamination of potable water. Sensors and Actuators B: Chemical, 2005, 106, 3-6.	7.8	40
136	Efficacy of natamycin for control of growth and ochratoxin A production by Aspergillus carbonarius strains under different environmental conditions. Journal of Applied Microbiology, 2007, 103, 2234-2239.	3.1	40
137	Table olives volatile fingerprints: Potential of an electronic nose for quality discrimination. Sensors and Actuators B: Chemical, 2008, 134, 902-907.	7.8	40
138	Rapid throughput analysis of filamentous fungal growth using turbidimetric measurements with the Bioscreen C: a tool for screening antifungal compounds. Fungal Biology, 2012, 116, 161-169.	2.5	40
139	Solute stresses affect growth patterns, endogenous water potentials and accumulation of sugars and sugar alcohols in cells of the biocontrol yeast Candida sake. Journal of Applied Microbiology, 2000, 89, 1009-1017.	3.1	38
140	Efficacy of antioxidant mixtures on growth, fumonisin production and hydrolytic enzyme production by Fusarium verticillioides and F. proliferatum in vitro on maize-based media. Mycological Research, 2002, 106, 1093-1099.	2.5	38
141	Impact of Osmotic and Matric Water Stress on Germination, Growth, Mycelial Water Potentials and Endogenous Accumulation of Sugars and Sugar Alcohols in Fusarium graminearum. Mycologia, 2004, 96, 470.	1.9	38
142	Mould germination: Data treatment and modelling. International Journal of Food Microbiology, 2007, 114, 17-24.	4.7	38
143	Water relations of some Fusarium species from infected wheat ears and grain. Transactions of the British Mycological Society, 1984, 83, 281-285.	0.6	37
144	Early detection of fungi in stored grain. International Biodeterioration and Biodegradation, 1993, 32, 145-160.	3.9	36

#	Article	IF	CITATIONS
145	Modelling the effect of temperature and water activity on the growth of two ochratoxigenic strains of Aspergillus carbonarius from Greek wine grapes. Journal of Applied Microbiology, 2007, 103, 2267-2276.	3.1	36
146	Influence of sulphur dioxide, controlled atmospheres and water availability on in vitro germination, growth and ochratoxin A production by strains of Aspergillus carbonarius isolated from grapes. Postharvest Biology and Technology, 2007, 44, 141-149.	6.0	36
147	Removal of heavy metals using different polymer matrixes as support for bacterial immobilisation. Journal of Hazardous Materials, 2011, 191, 277-286.	12.4	35
148	Control of growth and fumonisin B1production by Fusarium verticillioides and Fusarium proliferatum isolates in moist maize with propionate preservatives. Food Additives and Contaminants, 1999, 16, 555-563.	2.0	34
149	Safe food and feed through an integrated toolbox for mycotoxin management: the MyToolBox approach. World Mycotoxin Journal, 2016, 9, 487-495.	1.4	34
150	Impact of bacterial biocontrol agents on aflatoxin biosynthetic genes, aflD and aflR expression, and phenotypic aflatoxin B1 production by Aspergillus flavus under different environmental and nutritional regimes. International Journal of Food Microbiology, 2016, 217, 123-129.	4.7	34
151	The influence of ecophysiological factors on growth, aflR gene expression and aflatoxin B1 production by a type strain of Aspergillus flavus. LWT - Food Science and Technology, 2017, 83, 283-291.	5 . 2	34
152	The relationship between fungal growth and ergosterol content of wheat grain. Mycological Research, 1992, 96, 965-970.	2.5	33
153	Studies on the effect of fruit-coating polymers and organic acids on growth of Colletotrichum musae in vitro and on post-harvest control of anthracnose of bananas. Mycological Research, 1993, 97, 1463-1468.	2.5	33
154	Effect of antioxidants and competing mycoflora on Fusarium verticillioides and F. proliferatum populations and fumonisin production on maize grain. Journal of Stored Products Research, 2005, 41, 211-219.	2.6	33
155	Development of a population-based threshold model of conidial germination for analysing the effects of physiological manipulation on the stress tolerance and infectivity of insect pathogenic fungi. Environmental Microbiology, 2006, 8, 1625-1634.	3.8	33
156	Potential for detection and discrimination between mycotoxigenic and non-toxigenic spoilage moulds using volatile production patterns: A review. Food Additives and Contaminants, 2007, 24, 1161-1168.	2.0	33
157	Comparison of temperature and moisture requirements for sporulation of Aspergillus flavus sclerotia on natural and artificial substrates. Fungal Biology, 2012, 116, 637-642.	2.5	33
158	Physiological approaches to improving the ecological fitness of fungal biocontrol agents , 2001, , 239-251.		33
159	Fungal sequestration, mobilization and transformation of metals and metalloids. , 1996, , 235-256.		32
160	Impact of interacting climate change factors on growth and ochratoxin A production by Aspergillus section Circumdati and Nigri species on coffee. World Mycotoxin Journal, 2016, 9, 863-874.	1.4	32
161	Chemical Composition and in Vitro Antimicrobial Activities of the Essential Oils from Endemic Psiadia Species Growing in Mauritius. Biological and Pharmaceutical Bulletin, 2004, 27, 1814-1818.	1.4	31
162	Effect of solute stress and temperature on growth rate and TRI5 gene expression using real time RT–PCR in Fusarium graminearum from Spanish wheat. International Journal of Food Microbiology, 2010, 140, 169-174.	4.7	31

#	Article	IF	CITATIONS
163	Carbon Dioxide Mediates the Response to Temperature and Water Activity Levels in Aspergillus flavus during Infection of Maize Kernels. Toxins, 2018, 10, 5.	3.4	31
164	Water availability affects the growth, accumulation of compatible solutes and the viability of the biocontrol agent Epicoccum nigrum. Mycopathologia, 2002, 156, 93-100.	3.1	30
165	Effect of water activity on hydrolytic enzyme production by Fusarium moniliforme and Fusarium proliferatum during colonisation of maize. International Journal of Food Microbiology, 1998, 42, 185-194.	4.7	29
166	Growth and aflatoxin production of an Italian strain of Aspergillus flavus: influence of ecological factors and nutritional substrates. World Mycotoxin Journal, 2011, 4, 425-432.	1.4	29
167	A membrane-based immunosensor for the analysis of the herbicide isoproturon. Analytica Chimica Acta, 2011, 699, 223-231.	5.4	29
168	Mycotoxigenic fungi and mycotoxins associated with stored maize from different regions of Lesotho. Mycotoxin Research, 2013, 29, 209-219.	2.3	29
169	Comparison of dry matter losses and aflatoxin B1 contamination of paddy and brown rice stored naturally or after inoculation with Aspergillus flavus at different environmental conditions. Journal of Stored Products Research, 2017, 73, 47-53.	2.6	29
170	Influence of storage environment on maize grain: CO ₂ production, dry matter losses and aflatoxins contamination. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2019, 36, 175-185.	2.3	29
171	Interacting climate change environmental factors effects on Fusarium langsethiae growth, expression of Tri genes and T-2/HT-2 mycotoxin production on oat-based media and in stored oats. Fungal Biology, 2019, 123, 618-624.	2.5	29
172	Microbial population dynamics on Golden Delicious apples from bud to harvest and effect of fungicide applications. Annals of Applied Biology, 1999, 134, 109-116.	2.5	28
173	Effect of environmental factors onin vitroandin situinteractions between atoxigenic and toxigenicA. flavusstrains and control of aflatoxin contamination of maize. Biocontrol Science and Technology, 2013, 23, 776-793.	1.3	28
174	Growth and sporulation of entomopathogenic <i>Beauveria bassiana</i> , <i>Metarhizium anisopliae</i> , <i>Isaria farinosa</i> and <i>Isaria fumosorosea</i> strains in relation to water activity and temperature interactions. Biocontrol Science and Technology, 2014, 24, 999-1011.	1.3	28
175	Electrospinning alginate/polyethylene oxide and curcumin composite nanofibers. Materials Letters, 2020, 270, 127662.	2.6	28
176	Effects of nutrient status and water potential of media on fungal growth and antagonistâ€pathogen interactions ¹ . EPPO Bulletin, 1987, 17, 581-591.	0.8	27
177	Establishment of microbial inocula on decomposing wheat straw in soil of different water contents. Soil Biology and Biochemistry, 1989, 21, 15-22.	8.8	27
178	Environment factors influence in vitro interspecific interactions between A. ochraceus and other maize spoilage fungi, growth and ochratoxin production. Mycopathologia, 1999, 146, 43-47.	3.1	27
179	Efficacy of fungal and bacterial antagonists for controlling growth, FUM1 gene expression and fumonisin B 1 production by Fusarium verticillioides on maize cobs of different ripening stages. International Journal of Food Microbiology, 2017, 246, 72-79.	4.7	27
180	Water activity, solute and temperature modify growth and spore production of wild type and genetically engineered Aspergillus niger strains. Enzyme and Microbial Technology, 2004, 35, 232-237.	3.2	26

#	Article	IF	CITATIONS
181	Relative importance of amino acids, glycine?betaine and ectoine synthesis in the biocontrol agent Pantoea agglomerans CPA-2 in response to osmotic, acidic and heat stress. Letters in Applied Microbiology, 2007, 45, 6-12.	2.2	26
182	Influence of physiological factors on growth, sporulation and ochratoxin A/B production of the new Aspergillus ochraceus grouping. World Mycotoxin Journal, 2009, 2, 429-434.	1.4	26
183	A survey of ochratoxin A occurence in Greek wines. Food Additives and Contaminants: Part B Surveillance, 2011, 4, 61-66.	2.8	26
184	Bacterial and Fungal Bioremediation Strategies. , 2014, , 301-323.		26
185	Relationship between growth and mycotoxin production by Fusarium species, biocides and environment., 2002,, 685-690.		26
186	Wood degradation, and cellulase and ligninase production, by Trametes and other wood-inhabiting basidiomycetes from indigenous forests of Zimbabwe. Mycological Research, 1998, 102, 1399-1404.	2.5	25
187	Thiosulphate and tetrathionate oxidation in arable soils. Soil Biology and Biochemistry, 1998, 30, 553-559.	8.8	25
188	Improving water stress tolerance of the biocontrol yeastCandida sakegrown in molasses-based media by physiological manipulation. Canadian Journal of Microbiology, 2001, 47, 123-129.	1.7	25
189	Effect of solute and matric potential on in vitro growth and sporulation of strains from a new population of Aspergillus flavus isolated in Italy. Fungal Ecology, 2008, 1, 102-106.	1.6	25
190	Physiological manipulation and formulation of the biocontrol yeast <i>Pichia anomala</i> for control of <i>Penicillium verrucosum</i> and ochratoxin A contamination of moist grain. Biocontrol Science and Technology, 2008, 18, 1063-1073.	1.3	25
191	Electronic nose analysis of bronchoalveolar lavage fluid. European Journal of Clinical Investigation, 2011, 41, 52-58.	3.4	25
192	<i>Origanum dictamnus</i> Oil Vapour Suppresses the Development of Grey Mould in Eggplant Fruit <i>In Vitro</i> . BioMed Research International, 2014, 2014, 1-11.	1.9	25
193	Efficacy of potential biocontrol agents for control of Fusarium verticillioides and fumonisin B1 under different environmental conditions. World Mycotoxin Journal, 2016, 9, 205-213.	1.4	25
194	Interacting Environmental Stress Factors Affects Targeted Metabolomic Profiles in Stored Natural Wheat and That Inoculated with F. graminearum. Toxins, 2018, 10, 56.	3.4	25
195	Insights into existing and future fungal and mycotoxin contamination of cured meats. Current Opinion in Food Science, 2019, 29, 20-27.	8.0	25
196	Water potentials and soluble carbohydrate concentrations in tissues of freshly harvested and stored mushrooms (Agaricus bisporus). Postharvest Biology and Technology, 2001, 22, 121-131.	6.0	24
197	Electronic Nose for the Early Detection of Moulds in Libraries and Archives. Indoor and Built Environment, 2004, 13, 387-395.	2.8	24
198	Impact assessment of bisphenol A on lignin-modifying enzymes by basidiomycete Trametes versicolor. Journal of Hazardous Materials, 2008, 154, 33-37.	12.4	24

#	Article	IF	CITATIONS
199	Modelling a two-dimensional spatial distribution of mycotoxin concentration in bulk commodities to design effective and efficient sample selection strategies. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2009, 26, 1298-1305.	2.3	24
200	Impact of three sterol-biosynthesis inhibitors on growth of Fusarium langsethiae and on T-2 and HT-2 toxin production in oat grain under different ecological conditions. Food Control, 2013, 34, 521-529.	5. 5	24
201	Impact of water-stress and washing treatments on production, synthesis and retention of endogenous sugar alcohols and germinability of Metarhizium anisopliae blastospores. Mycological Research, 2004, 108, 1337-1345.	2.5	23
202	Soil volatile fingerprints: Use for discrimination between soil types under different environmental conditions. Sensors and Actuators B: Chemical, 2007, 125, 556-562.	7.8	23
203	Early discrimination of fungal species responsible of ochratoxin A contamination of wine and other grape products using an electronic nose. Mycotoxin Research, 2009, 25, 187-192.	2.3	23
204	Impact of a <i>Streptomyces</i> (AS1) strain and its metabolites on control of <i>Aspergillus flavus</i> and aflatoxin B ₁ contamination <i>in vitro</i> and in stored peanuts. Biocontrol Science and Technology, 2011, 21, 1437-1455.	1.3	23
205	Comparison of growth, nutritional utilisation patterns, and niche overlap indices of toxigenic and atoxigenic Aspergillus flavus strains. Fungal Biology, 2013, 117, 650-659.	2.5	23
206	Effect of open-air fumigation with sulphur dioxide and ozone on phyllosphere and endophytic fungi of conifer needles. Plant, Cell and Environment, 1995, 18, 291-302.	5.7	22
207	Temperature and water potential relations of tropical Trametes and other wood-decay fungi from the indigenous forests of Zimbabwe. Mycological Research, 1999, 103, 1309-1317.	2.5	22
208	Impact of environmental factors on fungal respiration and dry matter losses in wheat straw. Journal of Stored Products Research, 2000, 37, 35-45.	2.6	22
209	Fungal volatile fingerprints: Discrimination between dermatophyte species and strains by means of an electronic nose. Sensors and Actuators B: Chemical, 2008, 131, 117-120.	7.8	22
210	Efficacy of gaseous ozone treatment on spore germination, growth and fumonisin production by Fusarium verticillioides inÂvitro and in situ in maize. Journal of Stored Products Research, 2014, 59, 178-184.	2.6	22
211	Mycotoxin production of Alternaria strains isolated from Korean barley grains determined by LC-MS/MS. International Journal of Food Microbiology, 2018, 268, 44-52.	4.7	22
212	Resilience of Biocontrol for Aflatoxin Minimization Strategies: Climate Change Abiotic Factors May Affect Control in Non-GM and GM-Maize Cultivars. Frontiers in Microbiology, 2019, 10, 2525.	3.5	22
213	Interacting climate change factors (CO2 and temperature cycles) effects on growth, secondary metabolite gene expression and phenotypic ochratoxin A production by Aspergillus carbonarius strains on a grape-based matrix. Fungal Biology, 2021, 125, 115-122.	2.5	22
214	Use of an electronic nose for the early detection and differentiation between spoilage fungi. Letters in Applied Microbiology, 1998, 27, 261-264.	2.2	22
215	Effect of open-air fumigation with sulphur dioxide on the occurrence of phylloplane fungi on winter barley. Agriculture, Ecosystems and Environment, 1991, 33, 245-261.	5.3	21
216	Induction of submerged conidiation of the biocontrol agent Penicillium oxalicum. Applied Microbiology and Biotechnology, 1997, 48, 389-392.	3.6	21

#	Article	IF	Citations
217	The use of HACCP in the control of mycotoxins: the case of cereals. , 2004, , 139-173.		21
218	Partitioning of ochratoxin A in mycelium and conidia of Aspergillus carbonarius and the impact on toxin contamination of grapes and wine. Journal of Applied Microbiology, 2007, 103, 961-968.	3.1	21
219	Different sample treatment approaches for the analysis of T-2 and HT-2 toxins from oats-based media. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2010, 878, 2145-2149.	2.3	21
220	Comparative study of water and temperature relations of growth and T-2/HT-2 toxin production by strains of Fusarium sporotrichioides and Fusarium langsethiae. World Mycotoxin Journal, 2012, 5, 365-372.	1.4	21
221	Advances in molecular and genomic research to safeguard food and feed supply from aflatoxin contamination. World Mycotoxin Journal, 2018, 11, 47-72.	1.4	21
222	Fusarium graminearum in Stored Wheat: Use of CO2 Production to Quantify Dry Matter Losses and Relate This to Relative Risks of Zearalenone Contamination under Interacting Environmental Conditions. Toxins, 2018, 10, 86.	3.4	21
223	Improving water stress tolerance of the biocontrol yeast <i>Candida sake </i> grown in molasses-based media by physiological manipulation. Canadian Journal of Microbiology, 2001, 47, 123-129.	1.7	21
224	In vitro growth and germination of phylloplane fungi in atmospheric sulphur dioxide. Transactions of the British Mycological Society, 1988, 90, 571-575.	0.6	20
225	Influence of water activity and nutrients on growth and production of squalestatin S1 by a Phoma sp Journal of Applied Microbiology, 1999, 87, 842-848.	3.1	20
226	Characterisation of optimum cultural environmental conditions for the production of high numbers of Metarhizium anisopliae blastospores with enhanced ecological fitness. Biocontrol Science and Technology, 2005, 15, 683-699.	1.3	20
227	Comparison of three different C18 HPLC columns with different particle sizes for the optimization of aflatoxins analysis. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, 889-890, 138-143.	2.3	20
228	Effect of interaction between Aspergillus carbonarius and non-ochratoxigenic grape-associated fungal isolates on growth and ochratoxin A production at different water activities and temperatures. Food Microbiology, 2015, 46, 521-527.	4.2	20
229	The ``-omics'' contributions to the understanding of mycotoxin production under diverse environmental conditions. Current Opinion in Food Science, 2018, 23, 97-104.	8.0	20
230	Influence of Two Garlic-Derived Compounds, Propyl Propane Thiosulfonate (PTS) and Propyl Propane Thiosulfinate (PTSO), on Growth and Mycotoxin Production by Fusarium Species In Vitro and in Stored Cereals. Toxins, 2019, 11, 495.	3.4	20
231	Inhibitory effects of climate change on the growth and extracellular enzyme activities of a widespread Antarctic soil fungus. Global Change Biology, 2021, 27, 1111-1125.	9.5	20
232	Discrimination between aflatoxigenic and non-aflatoxigenic Aspergillus section Flavi strains from Egyptian peanuts using molecular and analytical techniques. World Mycotoxin Journal, 2011, 4, 69-77.	1.4	19
233	Assessment of the Effect of Satureja montana and Origanum virens Essential Oils on Aspergillus flavus Growth and Aflatoxin Production at Different Water Activities. Toxins, 2020, 12, 142.	3.4	19
234	Differentiation of Agaricus species and other homobasidiomycetes based on volatile production patterns using an electronic nose system. Mycological Research, 2003, 107, 609-613.	2.5	18

#	Article	IF	CITATIONS
235	Impact of Water Activity and Temperature on Growth and Ochratoxin A Production of Two Aspergillus carbonarius Isolates from Wine Grapes in Greece. Journal of Food Protection, 2007, 70, 2884-2888.	1.7	18
236	Assessment of intraspecies variability in fungal growth initiation of Aspergillus flavus and aflatoxin B 1 production under static and changing temperature levels using different initial conidial inoculum levels. International Journal of Food Microbiology, 2018, 272, 1-11.	4.7	18
237	Resilience of Aspergillus westerdijkiae Strains to Interacting Climate-Related Abiotic Factors: Effects on Growth and Ochratoxin A Production on Coffee-Based Medium and in Stored Coffee. Microorganisms, 2020, 8, 1268.	3.6	18
238	Interacting Abiotic Factors Affect Growth and Aflatoxin B1 Production Profiles of Aspergillus flavus Strains on Pistachio-Based Matrices and Pistachio Nuts. Frontiers in Microbiology, 2020, 11, 624007.	3.5	18
239	Studies on Pesticides Mixture Degradation by White Rot Fungi. Journal of Ecological Engineering, 2019, 20, 16-26.	1.1	18
240	Effect of increased CO2concentration and temperature on the phyllosphere mycoflora of winter wheat flag leaves during ripening. Annals of Applied Biology, 1996, 129, 189-195.	2.5	17
241	Influence of water activity and temperature on in vitro growth of surface cultures of a Phoma sp. and production of the pharmaceutical metabolites, squalestatins S1 and S2. Applied Microbiology and Biotechnology, 1998, 49, 328-332.	3.6	17
242	Trichophyton species: use of volatile fingerprints for rapid identification and discrimination. British Journal of Dermatology, 2006, 155, 1209-1216.	1.5	17
243	Detection and discrimination between ochratoxin producer and non-producer strains of Penicillium nordicum on a ham-based medium using an electronic nose. Mycotoxin Research, 2011, 27, 29-35.	2.3	17
244	Water Potential, Growth and Cellulolysis of Fungi Involved in Decomposition of Cereal Residues. Microbiology (United Kingdom), 1986, 132, 1181-1187.	1.8	16
245	Effect of microwave heating on quality and mycoflora of sorghum grain. Journal of Stored Products Research, 1992, 28, 251-256.	2.6	16
246	Water availability affects extracellular hydrolytic enzyme production by Aspergillus flavus and Aspergillus parasiticus. World Mycotoxin Journal, 2009, 2, 313-322.	1.4	16
247	Tolerance and uptake of cadmium, arsenic and lead by Fusarium pathogens of cereals. International Biodeterioration and Biodegradation, 1998, 42, 55-62.	3.9	15
248	Geostatistical analysis of the spatial distribution of mycotoxin concentration in bulk cereals. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2009, 26, 867-873.	2.3	15
249	Effect of Calcium Propionate and Water Activity on Growth and Aflatoxins Production byâ€, <i>Aspergillus flavus </i> Journal of Food Science, 2010, 75, M61-4.	3.1	15
250	Microbial changes during the on-farm storage of canola (oilseed rape) straw bales and pellets. Biomass and Bioenergy, 2011, 35, 2939-2949.	5.7	15
251	Relationship between environmental conditions, carbon utilisation patterns and Niche Overlap Indices of the mycotoxigenic species Fusarium verticillioides and the biocontrol agent Clonostachys rosea. Fungal Ecology, 2016, 24, 44-52.	1.6	15
252	Impact of climate change environmental conditions on the resilience of different formulations of the biocontrol agent <i>Candida sake</i> CPA-1 on grapes. Letters in Applied Microbiology, 2018, 67, 2-8.	2.2	15

#	Article	IF	CITATIONS
253	Impact of osmotic and matric water stress on germination, growth, mycelial water potentials and endogenous accumulation of sugars and sugar alcohols in Fusarium graminearum. Mycologia, 2004, 96, 470-8.	1.9	15
254	Title is missing!. Mycopathologia, 1999, 146, 83-89.	3.1	14
255	Production of the fungal biocontrol agent Ulocladium atrum by submerged fermentation: accumulation of endogenous reserves and shelf-life studies. Applied Microbiology and Biotechnology, 2001, 56, 372-377.	3.6	14
256	Use of volatile fingerprints for rapid screening of antifungal agents for efficacy against dermatophyte Trichophyton species. Sensors and Actuators B: Chemical, 2010, 146, 521-526.	7.8	14
257	The Microbial Habitability of Weathered Volcanic Glass Inferred from Continuous Sensing Techniques. Astrobiology, 2011, 11, 651-664.	3.0	14
258	Combined effects of benomyl and environmental factors on growth and expression of the fumonisin biosynthetic genes FUM1 and FUM19 by Fusarium verticillioides. International Journal of Food Microbiology, 2014, 191, 17-23.	4.7	14
259	Impacts of Climate Change Interacting Abiotic Factors on Growth, aflD and aflR Gene Expression and Aflatoxin B1 Production by Aspergillus flavus Strains In Vitro and on Pistachio Nuts. Toxins, 2021, 13, 385.	3.4	14
260	Managing microbial spoilage in cereal and baking products., 2006,, 194-212.		13
261	The Effect of Substrate, Season, and Agroecological Zone on Mycoflora and Aflatoxin Contamination of Poultry Feed from Khyber Pakhtunkhwa, Pakistan. Mycopathologia, 2012, 174, 341-349.	3.1	13
262	Predicted ecological niches and environmental resilience of different formulations of the biocontrol yeast Candida sake CPA-1 using the Bioscreen C. BioControl, 2018, 63, 855-866.	2.0	13
263	Carbon dioxide production as an indicator of Aspergillus flavus colonisation and aflatoxins/cyclopiazonic acid contamination in shelled peanuts stored under different interacting abiotic factors. Fungal Biology, 2020, 124, 1-7.	2.5	13
264	Ecophysiology of biocontrol agents for improved competence in the phyllosphere , 2006, , 149-164.		13
265	Temperature and water stress impacts on growth and production of altertoxin-II by strains of Alternaria tenuissima from Argentinean wheat. World Mycotoxin Journal, 2014, 7, 329-334.	1.4	13
266	Water relations and metabolism of propionate in two yeasts from hay. Journal of Applied Bacteriology, 1986, 60, 169-173.	1.1	12
267	The effects of two ammonium propionate formulations on growth <i>in vitro</i> of <i>Aspergillus</i> species isolated from hay. Journal of Applied Bacteriology, 1986, 60, 221-225.	1.1	12
268	Growth of Coniothyrium minitans, Gliocladium roseum, Trichoderma harzianum and T. viride from alginate pellets and interaction with water availability. EPPO Bulletin, 1988, 18, 37-45.	0.8	12
269	Lipolytic activity and degradation of rapeseed oil and rapeseed by spoilage fungi. International Journal of Food Microbiology, 1993, 19, 217-227.	4.7	12
270	Accumulation of Compatible Solutes in Penicillium frequentans Grown at Reduced Water Activity and Biocontrol of Monilinia laxa. Biocontrol Science and Technology, 2000, 10, 71-80.	1.3	12

#	Article	IF	Citations
271	The future of early disease detection? Applications of electronic nose technology in otolaryngology. Journal of Laryngology and Otology, 2010, 124, 823-827.	0.8	12
272	Hydro- and thermotimes for conidial germination kinetics of the ochratoxigenic species Aspergillus carbonarius inÂvitro, on grape skin and grape flesh. Fungal Biology, 2014, 118, 996-1003.	2.5	12
273	Assessment of rhizospheric culturable bacteria of <i>Phragmites australis</i> and <i>Juncus effusus</i> from polluted sites. Journal of Basic Microbiology, 2015, 55, 1179-1190.	3.3	12
274	Development of a HOG-based real-time PCR method to detect stress response changes in mycotoxigenic moulds. Food Microbiology, 2016, 57, 109-115.	4.2	12
275	Potential Control of Mycotoxigenic Fungi and Ochratoxin A in Stored Coffee Using Gaseous Ozone Treatment. Microorganisms, 2020, 8, 1462.	3.6	12
276	Unveiling the effect of interacting forecasted abiotic factors on growth and aflatoxin B1 production kinetics by Aspergillus flavus. Fungal Biology, 2021, 125, 89-94.	2.5	12
277	Water and temperature relations of Fusarium langsethiae strains and modelling of growth and T-2 and HT-2 mycotoxin production on oat-based matrices. International Journal of Food Microbiology, 2021, 348, 109203.	4.7	12
278	In vitro studies of the effect of Environmental Conditions on the anthacnose pathogen of bananas, Colletotrichum musae. International Biodeterioration and Biodegradation, 1994, 33, 369-381.	3.9	11
279	The Role Of Spoilage Fungi In Seed Deterioration. Mycology, 2003, , .	0.5	11
280	Environmental factors and preservatives affect carbon utilization patterns and niche overlap of food spoilage fungi. Fungal Ecology, 2008, 1, 24-32.	1.6	11
281	Chapter 2 Environmental fluxes and fungal interactions: Maintaining a competitive edge. British Mycological Society Symposia Series, 2008, , 19-35.	0.5	11
282	Comparison of five different C18 HPLC analytical columns for the analysis of ochratoxin A in different matrices. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2014, 971, 89-93.	2.3	11
283	Foreword: mycotoxins in a changing world. World Mycotoxin Journal, 2016, 9, 647-651.	1.4	11
284	Impact of storage environment on respiration, dry matter losses and fumonisin B1 contamination of stored paddy and brown rice. World Mycotoxin Journal, 2017, 10, 319-326.	1.4	11
285	Genomeâ€wide association mapping of <i>Fusarium langsethiae</i> infection and mycotoxin accumulation in oat (<i>Avena sativa</i> L.). Plant Genome, 2020, 13, e20023.	2.8	11
286	The impact of management practices to prevent and control mycotoxins in the European food supply chain: MyToolBox project results. World Mycotoxin Journal, 2021, 14, 139-154.	1.4	11
287	Fungal colonization and decomposition of cereal straw. International Biodeterioration, 1988, 24, 435-443.	0.2	10
288	Microfloral contamination and hydrolytic enzyme differences between monsooned and non-monsooned coffees. Letters in Applied Microbiology, 2002, 34, 279-282.	2.2	10

#	Article	IF	CITATIONS
289	Effects of osmotic and matric potential on radial growth and accumulation of endogenous reserves in three isolates of <i> Pochonia chlamydosporia < /i > . Biocontrol Science and Technology, 2009, 19, 185-199.</i>	1.3	10
290	The impact of water and temperature interactions on lag phase, growth and potential ochratoxin A production by two new species, Aspergillus aculeatinus and A. sclerotiicarbonarius, on a green coffee-based medium. International Journal of Food Microbiology, 2014, 188, 116-121.	4.7	10
291	Anti-Phytophthora cinnamomi activity of Phlomis purpurea plant and root extracts. European Journal of Plant Pathology, 2014, 138, 835-846.	1.7	10
292	Evaluation of the risk of fungal spoilage when substituting sucrose with commercial purified Stevia glycosides in sweetened bakery products. International Journal of Food Microbiology, 2016, 231, 42-47.	4.7	10
293	Phytopathogenic organisms and mycotoxigenic fungi: Why do we control one and neglect the other? A biological control perspective in Malaysia. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 643-669.	11.7	10
294	Comparative Growth Inhibition of Bread Spoilage Fungi by Different Preservative Concentrations Using a Rapid Turbidimetric Assay System. Frontiers in Microbiology, 2021, 12, 678406.	3.5	10
295	Efficacy of metabolites of a Streptomyces strain (AS1) to control growth and mycotoxin production by Penicillium verrucosum, Fusarium verticillioides and Aspergillus fumigatus in culture. Mycotoxin Research, 2020, 36, 225-234.	2.3	10
296	Improvements within the peanut production chain to minimize aflatoxins contamination: An Ethiopian case study. Food Control, 2022, 136, 108622.	5.5	10
297	Effects of potassium sorbate and environmental factors on growth of tobacco spoilage fungi. Mycological Research, 1990, 94, 971-978.	2.5	9
298	Prevention of ochratoxin A in cereals in Europe. Advances in Experimental Medicine and Biology, 2006, 571, 317-342.	1.6	9
299	Chapter 4 Ecophysiology: Impact of environment on growth, synthesis of compatible solutes and enzyme production. British Mycological Society Symposia Series, 2008, 28, 63-78.	0.5	9
300	The Influence of Water Activity and Temperature on Germination, Growth and Sporulation of Stachybotrys chartarum Strains. Mycopathologia, 2011, 172, 17-23.	3.1	9
301	Mould prevention in bread., 2012, , 597-613.		9
302	Analysis of Volatile Fingerprints for Monitoring Anti-Fungal Efficacy Against the Primary and Opportunistic Pathogen Aspergillus fumigatus. Mycopathologia, 2012, 173, 93-101.	3.1	9
303	Aspergillus section Flavi diversity and the role of A. novoparasiticus in aflatoxin contamination in the sugarcane production chain. International Journal of Food Microbiology, 2019, 293, 17-23.	4.7	9
304	Impact of essential oils on growth and ochratoxin A production by Penicillium verrucosum and Aspergillus ochraceus on a wheat-based substrate, 2003,, 479-485.		9
305	Climate Change and Mycotoxins. , 2015, , .		9
306	Utilization of potassium sorbate by tobacco spoilage fungi. Mycological Research, 1990, 94, 965-970.	2.5	8

#	Article	IF	Citations
307	Efficacy of different caffeine concentrations on growth and ochratoxin A production by <i>Aspergillus</i> species. Letters in Applied Microbiology, 2016, 63, 25-29.	2.2	8
308	Fungal diversity and metabolomic profiles in GM and isogenic non-GM maize cultivars from Brazil. Mycotoxin Research, 2021, 37, 39-48.	2.3	8
309	A short geostatistical study of the three-dimensional spatial structure of fumonisins in stored maize. World Mycotoxin Journal, 2010, 3, 95-103.	1.4	8
310	The production and characterization of monoclonal antibodies againstalternaria brassicae(berk.) sacc., the cause of dark leaf and pod spot in oilseed rape. Food and Agricultural Immunology, 1997, 9, 219-232.	1.4	7
311	The influence of environmental factors on growth and interactions between Embellisia allii and Fusarium oxysporum f. sp. cepae isolated from garlic. International Journal of Food Microbiology, 2010, 138, 238-242.	4.7	7
312	Three-Dimensional Study of F. graminearum Colonisation of Stored Wheat: Post-Harvest Growth Patterns, Dry Matter Losses and Mycotoxin Contamination. Microorganisms, 2020, 8, 1170.	3.6	7
313	Conditions for infection of strawberry fruit by M. piriformis and Rhizopus spp European Journal of Plant Pathology, 2020, 157, 65-75.	1.7	7
314	Importance of Ecological Windows for Efficacy of Biocontrol Agents. Progress in Biological Control, 2020, , 1-14.	0.5	7
315	4 Changes in environmental factors driven by climate change: effects on the ecophysiology of mycotoxigenic fungi., 2015,, 71-90.		7
316	Comparison of multiple mycotoxins in harvested maize samples in three years (2018–2020) in four continents. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2022, 39, 599-608.	2.3	7
317	The water content/water activity relationship of cured tobacco and water relations of associated spoilage fungi. International Biodeterioration, 1990, 26, 381-396.	0.2	6
318	A novel immobilised design for the production of the heterologous protein lysozyme by a genetically engineered Aspergillus niger strain. Applied Microbiology and Biotechnology, 2005, 67, 336-344.	3.6	6
319	Dynamics of solute/matric stress interactions with climate change abiotic factors on growth, gene expression and ochratoxin A production by Penicillium verrucosum on a wheat-based matrix. Fungal Biology, 2021, 125, 62-68.	2.5	6
320	Determining future aflatoxin contamination risk scenarios for corn in Southern Georgia, USA using spatio-temporal modelling and future climate simulations. Scientific Reports, 2021, 11, 13522.	3.3	6
321	Critical Evaluation of Two Commercial Biocontrol Agents for Their Efficacy against B. cinerea under In Vitro and In Vivo Conditions in Relation to Different Abiotic Factors. Agronomy, 2021, 11, 1868.	3.0	6
322	New biosensors., 2001,, 760-775.		6
323	Comparative effects of fungicides and environmental factors on growth and T-2 + HT-2 toxin production by Fusarium sporotrichioides and Fusarium langsethiae strains on an oat-based matrix. World Mycotoxin Journal, 2014, 7, 177-186.	1.4	6
324	Bacterial and fungal bioremediation strategies. , 2022, , 193-212.		6

#	Article	IF	CITATIONS
325	Impacts of Gaseous Ozone (O3) on Germination, Mycelial Growth, and Aflatoxin B1 Production In Vitro and In Situ Contamination of Stored Pistachio Nuts. Toxins, 2022, 14, 416.	3.4	6
326	Impact of genetically-modified microorganisms on the terrestrial microbiota including fungi. , 1996, , 299-316.		5
327	Mould prevention in bread. , 2003, , 500-514.		5
328	Water availability and metabolomic profiles of Epicoccum nigrum and Sarophorum palmicola grown in solid substrate fermentation systems. The Mycologist, 2005, 19, 18-23.	0.4	5
329	Food security, climate change and mycotoxins. Quality Assurance and Safety of Crops and Foods, 2012, 4, 145-145.	3.4	5
330	Influence of calcium propionate, water activity and storage time on mold incidence and aflatoxins production in broiler starter feed. Animal Feed Science and Technology, 2014, 188, 137-144.	2.2	5
331	Solute and matric potential stress on Penicillium verrucosum: impact on growth, gene expression and ochratoxin A production. World Mycotoxin Journal, 2020, 13, 345-353.	1.4	5
332	Lactobacillus plantarum strain HT-W104-B1: potential bacterium isolated from Malaysian fermented foods for control of the dermatophyte Trichophyton rubrum. World Journal of Microbiology and Biotechnology, 2021, 37, 57.	3.6	5
333	Decision support system for integrated management of mycotoxins in feed and food supply chains. World Mycotoxin Journal, 2022, 15, 119-133.	1.4	5
334	Ecophysiology of fumonisin producers in Fusarium section Liseola. Advances in Experimental Medicine and Biology, 2006, 571, 115-122.	1.6	5
335	Multitarget environmental approach for control of growth and toxin production by Fusarium culmorum using essential oils and antioxidants, 2003, , 486-492.		5
336	Comparison of growth and aflatoxin B1 production profiles of Aspergillus flavus strains on conventional and isogenic GM-maize-based nutritional matrices. Fungal Biology, 2022, 126, 82-90.	2.5	5
337	Calorific Losses in Maize in Relation to Colonisation by Isolates of Aspergillus ochraceus Under Different Environmental Conditions. Journal of Cereal Science, 1999, 29, 177-183.	3.7	4
338	Ecophysiology of Fusarium culmorum and mycotoxin production. Advances in Experimental Medicine and Biology, 2006, 571, 123-136.	1.6	4
339	Introductory note. International Journal of Food Microbiology, 2006, 111, S1.	4.7	4
340	Water availability and calcium propionate affect fungal population and aflatoxins production in broiler finisher feed during storage. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2014, 31, 1896-1903.	2.3	4
341	Ecophysiological requirements on growth and survival of the biocontrol agent Penicillium oxalicum 212 in different sterile soils. Applied Soil Ecology, 2014, 78, 18-27.	4.3	4
342	A Previously Undescribed Helotialean Fungus That Is Superabundant in Soil Under Maritime Antarctic Higher Plants. Frontiers in Microbiology, 2020, 11, 615608.	3.5	4

#	Article	IF	Citations
343	Intra-species variability in Fusarium langsethiae strains in growth and T-2/HT-2 mycotoxin production in response to climate change abiotic factors. World Mycotoxin Journal, 2022, 15, 27-34.	1.4	4
344	Effects of Atmospheric Pollutants on Phyllosphere Microbial Communities. Brock/Springer Series in Contemporary Bioscience, 1991, , 379-400.	0.3	4
345	The Impact of Ecological Factors on Germination, Growth, Fumonisin Production of F. Moniliforme and F. Proliferatum and Their Interactions with other Common Maize Fungi. Cereal Research Communications, 1997, 25, 643-645.	1.6	4
346	Impact of environmental factors on growth and satratoxin G production by strains of Stachybotrys chartarum. World Mycotoxin Journal, 2012, 5, 37-43.	1.4	4
347	Effect of Acclimatization in Elevated CO2 on Growth and Aflatoxin B1 Production by Aspergillus flavus Strains on Pistachio Nuts. Microorganisms, 2022, 10, 49.	3.6	4
348	Effect of high temperature treatment on disinfestation and quality characteristics of sorghum. Annals of Applied Biology, 1992, 120, 161-171.	2.5	3
349	Molecular Assay Development to Monitor the Kinetics of Viable Populations of Two Biocontrol Agents, Bacillus subtilis QST 713 and Gliocladium catenulatum J1446, in the Phyllosphere of Lettuce Leaves. Biology, 2021, 10, 224.	2.8	3
350	Microscopic and Cytochemical Analysis of Extracellular Matrices and Endogenous Reserves of Conidia of Colletotrichum truncatum Harvested from Carbon- and Nitrogen-limited Cultures. Biocontrol Science and Technology, 2003, 13, 643-653.	1.3	2
351	Rapid detection methods for microbial contamination. , 2003, , 136-160.		2
352	A Membrane-Based ELISA Assay for the Herbicide Isoproturon in Soil Samples. Analytical Letters, 2012, 45, 99-109.	1.8	2
353	Investigation of the potential to reduce waste through sampling and spatial analysis of grain bulks. Biosystems Engineering, 2021, 207, 92-105.	4.3	2
354	Prevention strategies for trichothecenes and ochratoxin in cereals, 2008, , 369-383.		2
355	Advances in post-harvest detection and control of fungal contamination of cereals. Burleigh Dodds Series in Agricultural Science, 2020, , 339-362.	0.2	2
356	Climate Change and Resilience of Biological Control Agents. Progress in Biological Control, 2020, , 83-93.	0.5	2
357	Fusarium Species Infection in Wheat: Impact on Quality and Mycotoxin Accumulation., 2020,, 421-452.		2
358	Abiotic factors affect growth and aflatoxin B1 production by Aspergillus flavus strains on chilli powder and red chillies. World Mycotoxin Journal, 2022, 15, 251-260.	1.4	2
359	De novo genome assembly and functional annotation for Fusarium langsethiae. BMC Genomics, 2022, 23, 158.	2.8	2
360	Interacting Environmental Stress Factors Affect Metabolomics Profiles in Stored Naturally Contaminated Maize. Microorganisms, 2022, 10, 853.	3.6	2

#	Article	IF	CITATIONS
361	Natural antifungal agents for bakery products. , 2003, , 272-280.		1
362	Electronic Nose for Quality and Safety Control., 0,, 119-129.		1
363	Fusarium Mycotoxins: Chemistry, Genetics and Biology, by A.ÂE. Desjardins. 260 pp. St Paul, MN, USA: American Phytopathology Society (2006). US\$89 (hardback). ISBN 0-89054-335-6 Journal of Agricultural Science, 2007, 145, 539-539.	1.3	1
364	Scanning Electron Microscopy Study Of Germination and Growth of Fusarium Moniliforme on the Surface of Maize Grain Cereal Research Communications, 1997, 25, 809-810.	1.6	1
365	A survey of ochratoxin A occurence in Greek wines. , 0, .		1
366	Alternaria in Food: Ecophysiology, Mycotoxin Production and Toxicology. , 0, .		1
367	Effect of Water Activity on Hydrolytic Enzyme Production by Fusarium moniliforme and F. proliferatum on Maize Grain. Cereal Research Communications, 1997, 25, 499-500.	1.6	1
368	Biological Control Agents for Mycotoxin Control: Are They Resilient Enough?. Progress in Biological Control, 2020, , 295-309.	0.5	1
369	Farming System Effect on the Incidence of Aspergillus carbonarius on Kotsifali Grapes and Ochratoxin A Occurrence in Wines of Crete. Journal of Food Protection, 2020, 83, 1796-1800.	1.7	1
370	Patterns of fungal colonisation of cereal straw in soil. Proceedings of the Royal Society of Edinburgh Section B Biological Sciences, 1988, 94, 119-126.	0.2	0
371	Effect of atmospheric sulphur dioxide on the phylloplane fungi of cereals. Proceedings of the Royal Society of Edinburgh Section B Biological Sciences, 1988, 94, 176-177.	0.2	0
372	Fungal volatile fingerprints and machine learning: potential of discriminating and classifying dermatophyte species. BMC Systems Biology, 2007, 1 , .	3.0	0
373	Analysis Of Volatile Fingerprints: A Rapid Screening Method For Antifungal Agents For Efficacy Against Dermatophytes. , 2009, , .		0
374	Early Discrimination Of Microorganisms Involved In Ventilator Associated Pneumonia Using Qualitative Volatile Fingerprints. , 2009, , .		0
375	Proof of concept: could snake venoms be a potential source of bioactive compounds for control of mould growth and mycotoxin production. Letters in Applied Microbiology, 2020, 71, 459-465.	2.2	0
376	Postharvest grey mould development was suppressed by <i>Origanum dictamnus</i> oil vapours in tomato, pepper and eggplant fruit. Acta Horticulturae, 2021, , 43-50.	0.2	0
377	Mold prevention in bread., 2012,, 541-560.		0
378	Spatial analysis of mycotoxins in stored grain to develop more precise management strategies. , 2019, , .		0

#	Article	IF	CITATIONS
379	Efficacy of sodium metabisulphite for control of Aspergillus flavus and aflatoxin B1 contamination in vitro and in chilli powder and whole red chillies. Food Control, 2022, 135, 108786.	5.5	O