List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4790282/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tectonic evolution of the Qinling orogen, China: Review and synthesis. Journal of Asian Earth Sciences, 2011, 41, 213-237.	2.3	924
2	Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research, 2016, 29, 1-40.	6.0	750
3	Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea. Earth-Science Reviews, 2018, 186, 262-286.	9.1	576
4	Tectonics of South China continent and its implications. Science China Earth Sciences, 2013, 56, 1804-1828.	5.2	423
5	Palaeozoic tectonics and evolutionary history of the Qinling orogen: Evidence from geochemistry and geochronology of ophiolite and related volcanic rocks. Lithos, 2011, 122, 39-56.	1.4	272
6	Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System. Earth-Science Reviews, 2018, 186, 231-261.	9.1	260
7	Neoproterozoic accretionary tectonics along the northwestern margin of the Yangtze Block, China: Constraints from zircon U–Pb geochronology and geochemistry. Precambrian Research, 2012, 196-197, 247-274.	2.7	221
8	Timing of Paleozoic amalgamation between the North China and South China Blocks: Evidence from detrital zircon U–Pb ages. Tectonophysics, 2013, 586, 173-191.	2.2	216
9	Syn- and post-collisional granitoids in the Central Tianshan orogen: Geochemistry, geochronology and implications for tectonic evolution. Gondwana Research, 2011, 20, 568-581.	6.0	171
10	Triassic diorites and granitoids in the Foping area: Constraints on the conversion from subduction to collision in the Qinling orogen, China. Journal of Asian Earth Sciences, 2012, 47, 123-142.	2.3	170
11	Propagation tectonics and multiple accretionary processes of the Qinling Orogen. Journal of Asian Earth Sciences, 2015, 104, 84-98.	2.3	166
12	Central China Orogenic Belt and amalgamation of East Asian continents. Gondwana Research, 2021, 100, 131-194.	6.0	165
13	Neoproterozoic subduction tectonics of the northwestern Yangtze Block in South China: Constrains from zircon U–Pb geochronology and geochemistry of mafic intrusions in the Hannan Massif. Precambrian Research, 2011, 189, 66-90.	2.7	162
14	Mesozoic intracontinental orogeny in the Qinling Mountains, central China. Gondwana Research, 2016, 30, 144-158.	6.0	156
15	Neoproterozoic amalgamation of the Northern Qinling terrain to the North China Craton: Constraints from geochronology and geochemistry of the Kuanping ophiolite. Precambrian Research, 2014, 255, 77-95.	2.7	143
16	U-Pb and 40Ar/39Ar geochronological constraints on the exhumation history of the North Qinling terrane, China. Gondwana Research, 2011, 19, 881-893.	6.0	130
17	The Grenvillian Songshugou ophiolite in the Qinling Mountains, Central China: Implications for the tectonic evolution of the Qinling orogenic belt. Journal of Asian Earth Sciences, 2008, 32, 325-335.	2.3	126
18	Tectono-thermal events in East Kunlun, Northern Tibetan Plateau: Evidence from zircon U–Pb geochronology. Gondwana Research, 2016, 30, 179-190.	6.0	117

#	Article	IF	CITATIONS
19	Zircon U–Pb chronology, Hf isotope analysis and whole-rock geochemistry for the Neoarchean-Paleoproterozoic Yudongzi complex, northwestern margin of the Yangtze craton, China. Precambrian Research, 2017, 301, 65-85.	2.7	104
20	Sichuan Basin and beyond: Eastward foreland growth of the Tibetan Plateau from an integration of Late Cretaceous enozoic fission track and (Uâ€Th)/He ages of the eastern Tibetan Plateau, Qinling, and Daba Shan. Journal of Geophysical Research: Solid Earth, 2017, 122, 4712-4740.	3.4	97
21	Early Paleozoic tectonic evolution of the North Qinling orogenic belt: Evidence from geochemistry, phase equilibrium modeling and geochronology of metamorphosed mafic rocks from the Songshugou ophiolite. Gondwana Research, 2016, 30, 48-64.	6.0	83
22	Neoproterozoic subduction-accretionary tectonics of the South Qinling Belt, China. Precambrian Research, 2017, 293, 73-90.	2.7	82
23	Geochemistry and geochronology of Paleozoic intrusions in the Nalati (Narati) area in western Tianshan, Xinjiang, China: Implications for Paleozoic tectonic evolution. Journal of Asian Earth Sciences, 2013, 72, 33-62.	2.3	76
24	Panafrican basement and Mesozoic gabbro in the Zagros orogenic belt in the Dorud–Azna region (NW) Tj ETQ	q0.0.0 rgB	T [Qverlock]
25	Petrogenesis of Tarom high-potassic granitoids in the Alborz–Azarbaijan belt, Iran: Geochemical, U–Pb zircon and Sr–Nd–Pb isotopic constraints. Lithos, 2014, 184-187, 324-345.	1.4	66
26	The 1.0Ga S–type granite in the East Kunlun Orogen, Northern Tibetan Plateau: Implications for the Meso– to Neoproterozoic tectonic evolution. Journal of Asian Earth Sciences, 2016, 130, 46-59.	2.3	65
27	Laser-ICP-MS U–Pb zircon ages and geochemical and Sr–Nd–Pb isotopic compositions of the Niyasar plutonic complex, Iran: constraints on petrogenesis and tectonic evolution. International Geology Review, 2014, 56, 104-132.	2.1	60
28	Geochemistry and zircon U-Pb geochronology of granitoids in the East Kunlun Orogenic Belt, northern Tibetan Plateau: origin and tectonic implications. Journal of Asian Earth Sciences, 2016, 130, 265-281.	2.3	60
29	An ophiolitic tectonic melange first discovered in Huashan area, south margin of Qinling Orogenic Belt, and its tectonic implications. Science in China Series D: Earth Sciences, 1999, 42, 292-302.	0.9	59
30	Polyphase exhumation in the western Qinling Mountains, China: Rapid Early Cretaceous cooling along a lithospheric-scale tear fault and pulsed Cenozoic uplift. Tectonophysics, 2014, 617, 31-43.	2.2	55
31	Multi-stage metamorphic evolution of retrograde eclogite with a granulite-facies overprint in the Zhaigen area of the North Qinling Belt, China. Gondwana Research, 2016, 30, 79-96.	6.0	53
32	Tectonic evolution of a complex orogenic system: Evidence from the northern Qinling belt, Central China. Journal of Asian Earth Sciences, 2015, 113, 544-559.	2.3	51
33	Late-stage foreland growth of China's largest orogens (Qinling, Tibet): Evidence from the Hannan-Micang crystalline massifs and the northern Sichuan Basin, central China. Lithosphere, 2013, 5, 420-437.	1.4	48
34	Geochemistry of the subduction-related magmatic rocks in the Dahong Mountains, northern Hubei Province ?? Constraint on the existence and subduction of the eastern Mianl�e oceanic basin. Science in China Series D: Earth Sciences, 2004, 47, 366.	0.9	47
35	U–Pb zircon chronology of the Pangidi–Kondapalle layered intrusion, Eastern Ghats belt, India: Constraints on Mesoproterozoic arc magmatism in a convergent margin setting. Journal of Asian Earth Sciences, 2012, 49, 362-375.	2.3	45
36	Zircon U–Pb geochronology and Hf isotope of granitoids in East Kunlun: Implications for the Neoproterozoic magmatism of Qaidam Block, Northern Tibetan Plateau. Precambrian Research, 2018, 314, 377-393.	2.7	42

#	Article	IF	CITATIONS
37	Timing of Orogenic Exhumation Processes of the Qinling Orogen: Evidence From ⁴⁰ Ar/ ³⁹ Ar Dating. Tectonics, 2018, 37, 4037-4067.	2.8	41
38	Chronology and tectonic significance of Cenozoic faults in the Liupanshan Arcuate Tectonic Belt at the northeastern margin of the Qinghai–Tibet Plateau. Journal of Asian Earth Sciences, 2013, 73, 103-113.	2.3	39
39	U-Pb zircon dating, geochemistry and Sr-Nd-Pb isotopic ratios from Azna-Dorud Cadomian metagranites, Sanandaj-Sirjan Zone of western Iran. Precambrian Research, 2018, 306, 41-60.	2.7	39
40	Cross Orogenic Belts in Central China: Implications for the tectonic and paleogeographic evolution of the East Asian continental collage. Gondwana Research, 2022, 109, 18-88.	6.0	39
41	Formation of the Permian basalts and implications of geochemical tracing for paleo-tectonic setting and regional tectonic background in the Turpan-Hami and Santanghu basins, Xinjiang. Science in China Series D: Earth Sciences, 2006, 49, 584-596.	0.9	37
42	Geochronology and geochemistry of the Yazidaban ophiolitic mélange in Qimantagh: constraints on the Early Paleozoic back-arc basin of the East Kunlun Orogen, northern Tibetan Plateau. Journal of the Geological Society, 2019, 176, 306-322.	2.1	37
43	Mesozoic and Cenozoic multiple deformations in the Helanshan Tectonic Belt, Northern China. Gondwana Research, 2018, 60, 34-53.	6.0	36
44	Triassic tectonic interactions between the Alxa Massif and Ordos Basin: Evidence from integrated provenance analyses on sandstones, North China. Journal of Asian Earth Sciences, 2019, 169, 162-181.	2.3	35
45	A- and I-type metagranites from the North Shahrekord Metamorphic Complex, Iran: Evidence for Early Paleozoic post-collisional magmatism. Lithos, 2018, 300-301, 86-104.	1.4	34
46	Middle–Late Triassic sedimentation in the Helanshan tectonic belt: Constrain on the tectono-sedimentary evolution of the Ordos Basin, North China. Geoscience Frontiers, 2019, 10, 213-227.	8.4	31
47	Occurrence of the high grade Thabsila metamorphic complex within the low grade Three Pagodas shear zone, Kanchanaburi Province, western Thailand: Petrology and geochronology. Journal of Asian Earth Sciences, 2012, 60, 68-87.	2.3	30
48	Ultrahighâ€ŧemperature metamorphism in the Helanshan complex of the Khondalite Belt, North China Craton: Petrology and phase equilibria of spinelâ€bearing pelitic granulites. Journal of Metamorphic Geology, 2018, 36, 1199-1220.	3.4	29
49	Ordovician tectonic shift in the western North China Craton constrained by stratigraphic and geochronological analyses. Basin Research, 2020, 32, 1413-1440.	2.7	27
50	Geochemistry of metabasites from the North Shahrekord metamorphic complex, Sanandaj-Sirjan Zone: Geodynamic implications for the Pan-African basement in Iran. Precambrian Research, 2017, 293, 56-72.	2.7	26
51	Late Paleoproterozoic tectonic evolution of the Olongbuluke Terrane, northern Qaidam, China: Constraints from stratigraphy and detrital zircon geochronology. Precambrian Research, 2019, 331, 105349.	2.7	26
52	Geochemistry and detrital zircon records of the Ruyang-Luoyu groups, southern North China Craton: Provenance, crustal evolution and Paleo–Mesoproterozoic tectonic implications. Geoscience Frontiers, 2020, 11, 679-696.	8.4	25
53	Fabrication of TiC and TiB2 locally reinforced steel matrix composites using a Fe–Ti–B4C–C system by an SHS-casting route. Journal of Materials Science, 2007, 42, 8350-8356.	3.7	24
54	Melt-fluid infiltration in Archean suprasubduction zone mantle wedge: Evidence from geochemistry, zircon U–Pb geochronology and Lu–Hf isotopes from Wynad, southern India. Precambrian Research, 2016, 281, 101-127.	2.7	24

#	Article	IF	CITATIONS
55	Re-Os geochronology, O isotopes and mineral geochemistry of the Neoproterozoic Songshugou ultramafic massif in the Qinling Orogenic Belt, China. Gondwana Research, 2019, 70, 71-87.	6.0	23
56	Geomorphic indices and longitudinal profile of the Daba Shan, northeastern Sichuan Basin: Evidence for the late Cenozoic eastward growth of the Tibetan Plateau. Geomorphology, 2020, 353, 107031.	2.6	23
57	Reconstructing the Olongbuluke Terrane (northern Tibet) in the end-Neoproterozoic to Ordovician Indian margin of Gondwana. Precambrian Research, 2020, 348, 105865.	2.7	22
58	Indo-Burma passive amalgamation along the Kaladan Fault: Insights from zircon provenance in the Chittagong-Tripura Fold Belt (Bangladesh). Bulletin of the Geological Society of America, 2020, 132, 1953-1968.	3.3	21
59	Origin of mafic intrusions in the Micangshan Massif, Central China: Implications for the Neoproterozoic tectonic evolution of the northwestern Yangtze Block. Journal of Asian Earth Sciences, 2020, 190, 104132.	2.3	20
60	Paleomagnetic Constraints of the Lower Triassic Strata in South Qinling Belt: Evidence for a Discrete Terrane Between the North and South China Blocks. Tectonics, 2020, 39, e2019TC005698.	2.8	20
61	Co-evolution of the Cenozoic tectonics, geomorphology, environment and ecosystem in the Qinling Mountains and adjacent areas, Central China. Geosystems and Geoenvironment, 2022, 1, 100032.	3.2	20
62	Sedimentary fill history of the Huicheng Basin in the West Qinling Mountains and associated constraints on Mesozoic intracontinental tectonic evolution. Science China Earth Sciences, 2013, 56, 1639-1653.	5.2	19
63	Geochronology and geochemistry of <scp><i>ca</i></scp> . 2.48ÂGa granitoid gneisses from the <scp>Yudongzi Complex</scp> in the northâ€western <scp>Yangtze Block</scp> , <scp>China</scp> . Geological Journal, 2019, 54, 879-896.	1.3	19
64	The geochemical characteristics, geochronology and tectonic significance of the Carboniferous volcanic rocks of the Santanghu area in northeastern Xinjiang, China. Science China Earth Sciences, 2013, 56, 1318-1333.	5.2	18
65	Seismic imaging of the crust and uppermost mantle beneath the Qilian Orogenic Belt and its geodynamic implications. Tectonophysics, 2017, 705, 63-79.	2.2	18
66	Fabrics and geochronology of the Wushan ductile shear zone: Tectonic implications for the Shangdan suture zone in the Qinling orogen, Central China. Journal of Asian Earth Sciences, 2017, 139, 71-82.	2.3	18
67	Longitudinal profile of the <scp>Upper Weihe River</scp> : Evidence for the late <scp>Cenozoic</scp> uplift of the northeastern <scp>Tibetan Plateau</scp> . Geological Journal, 2018, 53, 364-378.	1.3	18
68	Source characteristics and provenance of metasedimentary rocks from the Kangxiwa Group in the Western Kunlun Orogenic Belt, NW China: Implications for tectonic setting and crustal growth. Gondwana Research, 2017, 46, 43-56.	6.0	17
69	Geochemistry, geochronology and Hf isotope of granitoids in the Chinese Altai: Implications for Paleozoic tectonic evolution of the Central Asian Orogenic Belt. Geoscience Frontiers, 2018, 9, 1399-1415.	8.4	16
70	Tectonic uplift of the northern Qinling Mountains (Central China) during the late Cenozoic: Evidence from DEM-based geomorphological analysis. Journal of Asian Earth Sciences, 2019, 184, 104005.	2.3	16
71	Cambrian tectonic evolution of the northwestern Ordos Terrane, North China: constraints of stratigraphy, sedimentology and zircon U–Pb geochronology. International Journal of Earth Sciences, 2019, 108, 569-586.	1.8	16
72	Devonian to Triassic tectonic evolution and basin transition in the East Kunlun–Qaidam area, northern Tibetan Plateau: Constraints from stratigraphy and detrital zircon U–Pb geochronology. Bulletin of the Geological Society of America, 2022, 134, 1967-1993.	3.3	15

#	Article	IF	CITATIONS
73	Geology and geochemistry of the Bingdaban ophiolitic mélange in the boundary fault zone on the northern Central Tianshan Belt, and its tectonic implications. Science in China Series D: Earth Sciences, 2007, 50, 17-24.	0.9	13
74	Geochemistry of the E-MORB type ophiolite and related volcanic rocks from the Wushan area, West Qinling. Science in China Series D: Earth Sciences, 2007, 50, 234-245.	0.9	13
75	Interpretation of fault system in the Tana Sag, Kenya, using edge recognition techniques and Euler deconvolution. Journal of Applied Geophysics, 2014, 109, 150-161.	2.1	13
76	Phase equilibrium modelling and SHRIMP zircon U–Pb dating of medium-pressure pelitic granulites in the Helanshan complex of the Khondalite Belt, North China Craton, and their tectonic implications. Precambrian Research, 2018, 314, 62-75.	2.7	13
77	Geochronology, geochemistry and Nd–Hf isotopes of the Xiaokouzi granite from the Helanshan complex: Constraints on the Paleoproterozoic evolution of the Khondalite Belt, North China Craton. Precambrian Research, 2018, 317, 57-76.	2.7	13
78	Thickening and partial melting of the Northern Qinling Orogen, China: insights from zircon U–Pb geochronology and Hf isotopic composition of migmatites. Journal of the Geological Society, 2019, 176, 1218-1231.	2.1	12
79	The basic dyke swarms in the Wudang block and its geological significance. Science Bulletin, 1998, 43, 1111-1115.	1.7	11
80	Geochronology, geochemistry and Sr–Nd–Hf isotopes of mafic dikes in the Huicheng Basin: Constraints on intracontinental extension of the Qinling orogen. Journal of Asian Earth Sciences, 2015, 104, 115-126.	2.3	11
81	Pressure–temperature–time (P–T–t) evolution of fore-arc and foreland schist in the Qinling Orogenic Belt, China: Implications for Late Paleozoic and Triassic subduction termination. Gondwana Research, 2018, 61, 20-45.	6.0	11
82	Fabrics, geothermometry, and geochronology of the Songshugou ophiolite: Insights into the tectonic evolution of the Shangdan suture, Qinling orogen, China. Lithosphere, 2019, 11, 784-803.	1.4	11
83	Development and distribution rules of the main Neoproterozoic source and reservoir strata in the Yangtze Block, Southern China. Precambrian Research, 2020, 350, 105915.	2.7	11
84	Permian tectonic evolution of the southwestern Ordos Basin, North China: Integrating constraints from sandstone petrology and detrital zircon geochronology. Geological Journal, 2020, 55, 8068-8091.	1.3	11
85	Stratigraphy and geochronology of Permo-Carboniferous strata in the Western North China Craton: Insights into the tectonic evolution of the southern Paleo-Asian Ocean. Gondwana Research, 2020, 88, 201-219.	6.0	11
86	Petrogenesis of the Carboniferous Ghaleh-Dezh metagranite, Sanandaj–Sirjan zone, Iran: constraints from new zircon U–Pb and ⁴⁰ Ar/ ³⁹ Ar ages and Sr–Nd isotopes. Geological Magazine, 2020, 157, 1823-1852.	1.5	11
87	Geochemistry, 40Ar/39Ar geochronology, and geodynamic implications of Early Cretaceous basalts from the western Qinling orogenic belt, China. Journal of Asian Earth Sciences, 2018, 151, 62-72.	2.3	10
88	Timing of two separate granulite-facies metamorphic events in the Helanshan complex, North China Craton: Constraints from monazite and zircon U–Pb dating of pelitic granulites. Lithos, 2019, 350-351, 105216.	1.4	10
89	Extensional collapse of the Gondwana orogen: Evidence from Cambrian mafic magmatism in the Trivandrum Block, southern India. Geoscience Frontiers, 2019, 10, 263-284.	8.4	10
90	Petrogenesis, tectonic setting and formation age of the metaperidotites in the Lajishan ophiolite, Central Qilian Block, NW China. Journal of Asian Earth Sciences, 2019, 186, 104076.	2.3	9

#	Article	IF	CITATIONS
91	Neoproterozoic active margin in the northwestern Yangtze Block, South China: new clues from detrital zircon U–Pb geochronology and geochemistry of sedimentary rocks from the Hengdan Group. Geological Magazine, 2021, 158, 842-858.	1.5	9
92	Provenance and Hf isotopic variation of Precambrian detrital zircons from the Qilian Orogenic Belt, NW China: Evidence to the transition from breakup of Columbia to the assembly of Rodinia. Precambrian Research, 2021, 357, 106153.	2.7	9
93	Geochronology and geochemistry of Cadomian basement orthogneisses from the Tutak metamorphic Complex, Sanandaj-Sirjan Zone, Iran. Precambrian Research, 2021, 362, 106288.	2.7	9
94	Geochemical characteristics of the Permian marine mudstone and constraints on its provenance and paleoenvironment in the Fenghai area, Fujian Province, southeastern China. Petroleum Science, 2019, 16, 527-540.	4.9	8
95	Petrogenesis and tectonic implications of Early Cretaceous andesitic–dacitic rocks, western Qinling (Central China): Geochronological and geochemical constraints. Geoscience Frontiers, 2019, 10, 1507-1520.	8.4	8
96	Petrogenesis and tectonic setting of Early Paleozoic granites and high-Mg diorites in the Northern Qilian Orogen, China. Journal of Asian Earth Sciences, 2020, 191, 104250.	2.3	8
97	Multi-stage metamorphism and deformation of the North Qinling Orogenic Belt: Constraints from petrology, geochronology, and structural analysis of the Qinling Complex. Gondwana Research, 2022, 105, 201-216.	6.0	8
98	A palaeomagnetic study of the Middle Permian and Middle Triassic limestones from Shan State, Myanmar: Implications for collision of the Sibumasu Terrane and Indochina Terrane. Geological Journal, 2020, 55, 1179-1194.	1.3	7
99	Geochemistry and geochronology of early Palaeozoic seamount in Western Kunlun orogenic belt and the tectonic implications. International Geology Review, 2022, 64, 1393-1408.	2.1	7
100	Volatile Element Evidence of Local MORB Mantle Heterogeneity Beneath the Southwest Indian Ridge, 48°–51°E. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009647.	2.5	7
101	New detrital zircon U–Pb insights on the palaeogeographic origin of the central Sanandaj–Sirjan zone, Iran. Geological Magazine, 2021, 158, 2165-2186.	1.5	7
102	Geochronology, geochemistry, and isotopic composition of the early Neoproterozoic granitoids in the Bikou Terrane along the northwestern margin of the Yangtze Block, South China: Petrogenesis and tectonic implications. Precambrian Research, 2022, 377, 106724.	2.7	7
103	Neoproterozoic HP granulite and its tectonic implication for the East Kunlun Orogen, northern Tibetan Plateau. Precambrian Research, 2022, 378, 106778.	2.7	7
104	Characteristics of the island-arc pillow lavas from southeast Yunnan Province, and its tectonic implications for Paleo-Tethys in South China. Science Bulletin, 2000, 45, 753-758.	1.7	6
105	Geochronology and geochemistry of mafic dykes in the Helanshan complex: Implications for Mesozoic tectonics in the North China Craton. Geoscience Frontiers, 2018, 9, 1711-1724.	8.4	6
106	Fabrics and geochronology of the Taibai ductile shear zone: Implications for tectonic evolution of the Qinling Orogenic Belt, central China. Journal of Asian Earth Sciences, 2019, 177, 1-16.	2.3	6
107	Petrogenesis and tectonic implications of the early Carboniferous volcanic rocks in West Junggar, NW China. Geological Journal, 2020, 55, 1826-1848.	1.3	6
108	Petrogenesis and tectonic implications of the Neoproterozoic mafic intrusions in the Bikou Terrane along the northwestern margin of the Yangtze Block, South China. Ore Geology Reviews, 2021, 131, 104014.	2.7	6

#	Article	IF	CITATIONS
109	Millennial-scale erosion patterns of the northern Qinling Mountains, Central China: Implications for topographical evolution. Geomorphology, 2021, 382, 107670.	2.6	6
110	The Oligocene Reifnitz tonalite (Austria) and its host rocks: implications for Cretaceous and Oligocene–Neogene tectonics of the south-eastern Eastern Alps. Geologica Carpathica, 2018, 69, 237-253.	0.7	6
111	The geological and geodynamic condition on the formation of the Dabashan thrust nappe structure: Based on FLAC numerical modelling. Earth Sciences Research Journal, 2016, 20, 1.	0.6	6
112	Mafic-ultramafic rocks in the Buqingshan Complex of the East Kunlun Orogen, northern Tibetan Plateau: remnants of the Paleo-Tethys Ocean. International Geology Review, 2022, 64, 3149-3170.	2.1	6
113	Crustal Deformation Patterns in the Tibetan Plateau and Its Adjacent Regions as Revealed by Receiver Functions. Bulletin of the Seismological Society of America, 2022, 112, 1297-1314.	2.3	6
114	Two phases of Cenozoic deformation in the Wudu Basin, West Qinling (Central China): Implications for outward expansion of the Tibetan Plateau. Journal of Asian Earth Sciences, 2022, 229, 105152.	2.3	6
115	Geochemistry of enclaves and host granitoids from the kashan granitoid complex, central iran: Implications for enclave generation by interaction of cogenetic magmas. Journal of Earth Science (Wuhan, China), 2015, 26, 626-647.	3.2	5
116	Early Cretaceous subduction-modified lithosphere beneath the eastern Qinling Orogen revealed from the Daying volcanic sequence in central China. Journal of Asian Earth Sciences, 2019, 176, 209-228.	2.3	5
117	Metamorphism and geochronology of garnet amphibolite from the Beishan Orogen, southern Central Asian Orogenic Belt: Constraints from P-T path and zircon U-Pb dating. Geoscience Frontiers, 2020, 11, 1189-1201.	8.4	5
118	Multiple phases of deformation in the southern Helanshan tectonic Belt, northern China. Journal of Asian Earth Sciences, 2020, 201, 104497.	2.3	5
119	Geochemistry and geochronology of Carboniferous magmatic rocks in the Sawur Mountains, northern West Junggar, NW China: implications for accretionary orogeny. International Journal of Earth Sciences, 2020, 109, 605-630.	1.8	5
120	Multistage Metamorphic Evolution of Retrograded Eclogites from the Songshugou Complex, Qinling Orogenic Belt, China. Journal of Petrology, 2019, 60, 2201-2226.	2.8	4
121	Ancient crustal recycling in modern island arcs: A tale of the world's youngest charnockite from SW Japan. Lithos, 2020, 354-355, 105360.	1.4	4
122	Mo isotopic response to the end of Neoproterozoic Marinoan glaciation: Evidence from a sedimentary profile in South China. Precambrian Research, 2020, 339, 105609.	2.7	4
123	Detrital zircon U–Pb ages of metasedimentary rocks from the Neoproterozoic Zhoutan Group in the northern Cathaysia Block (South China): Provenance and tectonic implications. International Geology Review, 2021, 63, 1132-1152.	2.1	4
124	Petrogenesis and tectonic implications of the late Neoproterozoic mafic dykes in the South Qinling Belt, China. Precambrian Research, 2022, 373, 106647.	2.7	4
125	Geochronological and geochemical constraints on the subduction-modified lithospheric origin of the early Cretaceous volcanic rocks, in the western North Huaiyang Belt of Dabie Orogen, China. Journal of the Geological Society, 2020, 177, 170-188.	2.1	3
126	Geochronology and petrogenesis of paleoproterozoic post-collisional quartz monzodiorites from the Helanshan Complex, North China Craton: Implications for crust–mantle interaction. Precambrian Research, 2021, 352, 106011.	2.7	3

#	Article	IF	CITATIONS
127	Early palaeozoic arc-continent collision in East Kunlun, northern Tibet: evidence from the minerology, geochemistry, and geochronology of the Adatan garnet amphibolites. International Geology Review, 2023, 65, 357-377.	2.1	3
128	Geochemistry of Eocene to Pliocene strata of the Bengal Basin: Implications for provenance and erosion of the Himalaya. Geological Journal, 2021, 56, 1756-1772.	1.3	2
129	Carboniferous sedimentary provenance and tectonic setting in the Darbut region of Western Junggar (NW China): evidence from mineralogy, geochemistry and detrital zircon U–Pb dating. Journal of the Geological Society, 2021, 178, jgs2020-132.	2.1	2
130	Zircon U–Pb dating and geochemistry of intrusive rocks in the Shangdan suture zone of the Qinling Orogenic Belt: petrogenesis and tectonic implications. Journal of the Geological Society, 2022, 179, .	2.1	2
131	Geochemistry, geochronology, and Hf isotope of diorites in the Marzheng area: Implications for the Early Palaeozoic tectonic evolution of the East Kunlun Orogenic Belt. Geological Journal, 2022, 57, 2284-2301.	1.3	2
132	Petrogenesis and tectonic implications of Late Permian S-type granites in the South Kunlun Belt, northern Tibetan Plateau. Journal of Asian Earth Sciences, 2022, 230, 105204.	2.3	2
133	Mesozoic contractional deformation in central East Asia: Constraints from deformation and sedimentary record of the Helanshan fold and thrust belt, North China Craton. Gondwana Research, 2022, 107, 235-255.	6.0	2
134	Applying the Tilt-depth and Tilt-Euler techniques of gravity data to decipher the basement depth in Sichuan Basin, China. Acta Geophysica, 0, , 1.	2.0	1
135	Arc building through bimodal magmatism: The Tsukuba Igneous Complex, Japan, and its correlations and connections. International Geology Review, 2022, 64, 2339-2358.	2.1	1
136	Development of the Asian Tethyan Realm: Preface. Journal of Asian Earth Sciences, 2015, 104, 1-2.	2.3	0
137	IAGR 2018 Annual Convention and 15th International Symposium on "Gondwana to Asiaâ€; Xi'an, China. Gondwana Research, 2019, 65, 178-181.	6.0	0
138	Meso-Neoproterozoic proto-basins and oil–gas resources in China: Preface. Precambrian Research, 2021, 360, 106221.	2.7	0
139	Juvenile crust, mantle magmatism and metallogeny of the Central Asian Orogenic Belt: Progress Report of IGCP#592. Episodes, 2016, 39, 59-69.	1.2	0