
## Frederic Lens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4789699/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | TRY – a global database of plant traits. Global Change Biology, 2011, 17, 2905-2935.                                                                                                        | 9.5  | 2,002     |
| 2  | Global convergence in the vulnerability of forests to drought. Nature, 2012, 491, 752-755.                                                                                                  | 27.8 | 1,944     |
| 3  | TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.                                                                                     | 9.5  | 1,038     |
| 4  | Weak tradeoff between xylem safety and xylemâ€specific hydraulic efficiency across the world's woody plant species. New Phytologist, 2016, 209, 123-136.                                    | 7.3  | 466       |
| 5  | Global trait–environment relationships of plant communities. Nature Ecology and Evolution, 2018, 2, 1906-1917.                                                                              | 7.8  | 397       |
| 6  | A synthesis of radial growth patterns preceding tree mortality. Global Change Biology, 2017, 23,<br>1675-1690.                                                                              | 9.5  | 394       |
| 7  | Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus <i>Acer</i> . New Phytologist, 2011, 190, 709-723.                               | 7.3  | 393       |
| 8  | Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana.<br>Nature Genetics, 2008, 40, 1489-1492.                                                        | 21.4 | 353       |
| 9  | Evolution of endemism on a young tropical mountain. Nature, 2015, 524, 347-350.                                                                                                             | 27.8 | 234       |
| 10 | Embolism resistance as a key mechanism to understand adaptive plant strategies. Current Opinion in<br>Plant Biology, 2013, 16, 287-292.                                                     | 7.1  | 181       |
| 11 | INTERVESSEL PIT MEMBRANE THICKNESS AS A KEY DETERMINANT OF EMBOLISM RESISTANCE IN ANGIOSPERM XYLEM. IAWA Journal, 2016, 37, 152-171.                                                        | 2.7  | 169       |
| 12 | IAWA List of Microscopic Bark Features. IAWA Journal, 2016, 37, 517-615.                                                                                                                    | 2.7  | 167       |
| 13 | Insular Woodiness on the Canary Islands: A Remarkable Case of Convergent Evolution. International<br>Journal of Plant Sciences, 2013, 174, 992-1013.                                        | 1.3  | 104       |
| 14 | Variation in xylem structure from tropics to tundra: Evidence from vestured pits. Proceedings of the<br>National Academy of Sciences of the United States of America, 2004, 101, 8833-8837. | 7.1  | 92        |
| 15 | Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nature<br>Ecology and Evolution, 2022, 6, 36-50.                                            | 7.8  | 89        |
| 16 | Do quantitative vessel and pit characters account for ionâ€mediated changes in the hydraulic conductance of angiosperm xylem?. New Phytologist, 2011, 189, 218-228.                         | 7.3  | 74        |
| 17 | A network model links wood anatomy to xylem tissue hydraulic behaviour and vulnerability to cavitation. Plant, Cell and Environment, 2018, 41, 2718-2730.                                   | 5.7  | 71        |
| 18 | Herbaceous angiosperms are not more vulnerable to drought-induced embolism than angiosperm<br>trees. Plant Physiology, 2016, 172, pp.00829.2016.                                            | 4.8  | 70        |

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Vulnerability to xylem embolism as a major correlate of the environmental distribution of rain forest species on a tropical island. Plant, Cell and Environment, 2017, 40, 277-289.                                    | 5.7 | 67        |
| 20 | Intervascular pit membranes with a torus in the wood of Ulmus (Ulmaceae) and related genera. New<br>Phytologist, 2004, 163, 51-59.                                                                                     | 7.3 | 61        |
| 21 | Palynological Characters and Their Phylogenetic Signal in Rubiaceae. Botanical Review, The, 2005, 71, 354-414.                                                                                                         | 3.9 | 55        |
| 22 | Ecological trends in the wood anatomy of Vaccinioideae (Ericaceae s.l.). Flora: Morphology,<br>Distribution, Functional Ecology of Plants, 2004, 199, 309-319.                                                         | 1.2 | 49        |
| 23 | Large volume vessels are vulnerable to water-stress-induced embolism in stems of poplar. IAWA<br>Journal, 2019, 40, 4-S4.                                                                                              | 2.7 | 49        |
| 24 | sPlotOpen – An environmentally balanced, openâ€access, global dataset of vegetation plots. Global<br>Ecology and Biogeography, 2021, 30, 1740-1764.                                                                    | 5.8 | 49        |
| 25 | Stem anatomy supports <i>Arabidopsis thaliana</i> as a model for insular woodiness. New Phytologist, 2012, 193, 12-17.                                                                                                 | 7.3 | 48        |
| 26 | Insular woody daisies ( <i>Argyranthemum,</i> Asteraceae) are more resistant to droughtâ€induced hydraulic failure than their herbaceous relatives. Functional Ecology, 2018, 32, 1467-1478.                           | 3.6 | 46        |
| 27 | In-depth study of the microstructure of bamboo fibres and their relation to the mechanical properties. Journal of Reinforced Plastics and Composites, 2018, 37, 1099-1113.                                             | 3.1 | 45        |
| 28 | The role of wood anatomy in phylogeny reconstruction of Ericales. Cladistics, 2007, 23, 229-294.                                                                                                                       | 3.3 | 40        |
| 29 | Traits and trade-offs in whole-tree hydraulic architecture along the vertical axis of Eucalyptus grandis. Annals of Botany, 2018, 121, 129-141.                                                                        | 2.9 | 40        |
| 30 | Relationships within balsaminoid Ericales: a wood anatomical approach. American Journal of Botany,<br>2005, 92, 941-953.                                                                                               | 1.7 | 34        |
| 31 | The multiple fuzzy origins of woodiness within Balsaminaceae using an integrated approach. Where do we draw the line?. Annals of Botany, 2012, 109, 783-799.                                                           | 2.9 | 34        |
| 32 | Scalariform-to-simple transition in vessel perforation plates triggered by differences in climate during the evolution of Adoxaceae. Annals of Botany, 2016, 118, 1043-1056.                                           | 2.9 | 34        |
| 33 | Exploring the Hydraulic Failure Hypothesis of Esca Leaf Symptom Formation. Plant Physiology, 2019, 181, 1163-1174.                                                                                                     | 4.8 | 32        |
| 34 | Embolism resistance in stems of herbaceous Brassicaceae and Asteraceae is linked to differences in woodiness and precipitation. Annals of Botany, 2019, 124, 1-14.                                                     | 2.9 | 32        |
| 35 | A comparison of paraffin and resinâ€based techniques used in bark anatomy. Taxon, 2011, 60, 841-851.                                                                                                                   | 0.7 | 31        |
| 36 | First steps in studying the origins of secondary woodiness in <i>Begonia</i> (Begoniaceae): combining anatomy, phylogenetics, and stem transcriptomics. Biological Journal of the Linnean Society, 2016, 117, 121-138. | 1.6 | 30        |

| #  | Article                                                                                                                                                                                       | IF          | CITATIONS     |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|
| 37 | Vessel grouping patterns in subfamilies Apocynoideae and Periplocoideae confirm phylogenetic value of wood structure within Apocynaceae. American Journal of Botany, 2009, 96, 2168-2183.     | 1.7         | 29            |
| 38 | Similar hydraulic efficiency and safety across vesselless angiosperms and vessel-bearing species with scalariform perforation plates. Journal of Experimental Botany, 2019, 70, 3227-3240.    | 4.8         | 29            |
| 39 | Comparative Wood Anatomy of Epacrids (Styphelioideae, Ericaceae s.l.). Annals of Botany, 2003, 91,<br>835-856.                                                                                | 2.9         | 28            |
| 40 | Embolism and mechanical resistances play a key role in dehydration tolerance of a perennial grass<br>Dactylis glomerata L Annals of Botany, 2018, 122, 325-336.                               | 2.9         | 28            |
| 41 | Pit membranes in tracheary elements of Rosaceae and related families: new records of tori and pseudotori. American Journal of Botany, 2007, 94, 503-514.                                      | 1.7         | 27            |
| 42 | Wood anatomy of Rauvolfioideae (Apocynaceae): a search for meaningful nonâ€DNA characters at the tribal level. American Journal of Botany, 2008, 95, 1199-1215.                               | 1.7         | 27            |
| 43 | Woodiness within the Spermacoceae–Knoxieae alliance (Rubiaceae): retention of the basal woody condition in Rubiaceae or recent innovation?. Annals of Botany, 2009, 103, 1049-1064.           | 2.9         | 27            |
| 44 | Functional network analysis of genes differentially expressed during xylogenesis in <i>soc1ful</i> woody Arabidopsis plants. Plant Journal, 2016, 86, 376-390.                                | 5.7         | 27            |
| 45 | Palynological Variation in Balsaminoid Ericales. II. Balsaminaceae, Tetrameristaceae, Pellicieraceae and<br>General Conclusions. Annals of Botany, 2005, 96, 1061-1073.                       | 2.9         | 26            |
| 46 | Palynological Variation in Balsaminoid Ericales. I. Marcgraviaceae. Annals of Botany, 2005, 96, 1047-1060.                                                                                    | 2.9         | 26            |
| 47 | Evolution of fruit and seed characters in the Diervilla and Lonicera clades (Caprifoliaceae,) Tj ETQq1 1 0.78431                                                                              | 4 rgBT /Ove | rlock 10 Tf 5 |
| 48 | Forensic Identification of Indian Snakeroot ( <i>Rauvolfia serpentina</i> Benth. ex Kurz) Using<br><scp>DNA</scp> Barcoding. Journal of Forensic Sciences, 2013, 58, 822-830.                 | 1.6         | 24            |
| 49 | Morphology, Carbohydrate Composition and Vernalization Response in a Genetically Diverse<br>Collection of Asian and European Turnips (Brassica rapa subsp. rapa). PLoS ONE, 2014, 9, e114241. | 2.5         | 23            |
| 50 | Intervessel pit membrane thickness best explains variation in embolism resistance amongst stems of<br><i>Arabidopsis thaliana</i> accessions. Annals of Botany, 2021, 128, 171-182.           | 2.9         | 23            |
| 51 | The Micromorphology of Pit Membranes in Tracheary Elements of Ericales: New Records of Tori or Pseudo-tori?. Annals of Botany, 2006, 98, 943-951.                                             | 2.9         | 22            |
| 52 | A search for phylogenetically informative wood characters within Lecythidaceae s.l American<br>Journal of Botany, 2007, 94, 483-502.                                                          | 1.7         | 22            |
| 53 | Evolution of woody life form on tropical mountains in the tribe Spermacoceae (Rubiaceae). American<br>Journal of Botany, 2017, 104, 419-438.                                                  | 1.7         | 22            |
| 54 | Computer-assisted timber identification based on features extracted from microscopic wood sections. IAWA Journal, 2020, 41, 660-680.                                                          | 2.7         | 22            |

| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | On research priorities to advance understanding of the safety–efficiency tradeoff in xylem. New<br>Phytologist, 2016, 211, 1156-1158.                                                               | 7.3 | 21        |
| 56 | The Distribution and Phylogeny of Aluminium Accumulating Plants in the Ericales. Plant Biology, 2004, 6, 498-505.                                                                                   | 3.8 | 20        |
| 57 | Comparative Wood Anatomy of the Primuloid Clade (Ericales s.l.). Systematic Botany, 2005, 30, 163-183.                                                                                              | 0.5 | 20        |
| 58 | Vestured pits and scalariform perforation plate morphology modify the relationships between<br>angiosperm vessel diameter, climate and maximum plant height. New Phytologist, 2019, 221, 1802-1813. | 7.3 | 19        |
| 59 | Temporal and palaeoclimatic context of the evolution of insular woodiness in the Canary Islands.<br>Ecology and Evolution, 2021, 11, 12220-12231.                                                   | 1.9 | 18        |
| 60 | Intraspecific variation in embolism resistance and stem anatomy across four sunflower<br>( <scp><i>Helianthus annuus</i></scp> L.) accessions. Physiologia Plantarum, 2018, 163, 59-72.             | 5.2 | 16        |
| 61 | Axial sampling height outperforms site as predictor of wood trait variation. IAWA Journal, 2019, 40,<br>191-S3.                                                                                     | 2.7 | 16        |
| 62 | Contributions to the Wood Anatomy of the Rubioideae (Rubiaceae). Journal of Plant Research, 2001, 114, 269-289.                                                                                     | 2.4 | 15        |
| 63 | Pollination and protection against herbivory of Nepalese Coelogyninae (Orchidaceae). American<br>Journal of Botany, 2011, 98, 1095-1103.                                                            | 1.7 | 12        |
| 64 | Pollen morphological variation in Vanguerieae (Ixoroideae Rubiaceae). Grana, 2000, 39, 90-102.                                                                                                      | 0.8 | 10        |
| 65 | Comparative wood anatomy of Andromedeae s.s., Gaultherieae, Lyonieae and Oxydendreae<br>(Vaccinioideae, Ericaceae s.l.). Botanical Journal of the Linnean Society, 2004, 144, 161-179.              | 1.6 | 10        |
| 66 | WOOD ANATOMY OF THE VANGUERIEAE (IXOROIDEAERUBIACEAE), WITH SPECIAL EMPHASIS ON SOME GEOFRUTICES. IAWA Journal, 2000, 21, 443-455.                                                                  | 2.7 | 9         |
| 67 | Micromorphology and Systematic Distribution of Pit Membrane Thickenings in Oleaceae: Tori and Pseudo-Tori. IAWA Journal, 2008, 29, 409-424.                                                         | 2.7 | 9         |
| 68 | The phylogenetic significance of vestured pits in Boraginaceae. Taxon, 2010, 59, 510-516.                                                                                                           | 0.7 | 8         |
| 69 | An extension of the Plant Ontology project supporting wood anatomy and development research.<br>IAWA Journal, 2012, 33, 113-117.                                                                    | 2.7 | 8         |
| 70 | Phylogenetic and Ecological Signals in the Wood of Spathelioideae (Rutaceae). IAWA Journal, 2012, 33, 337-353.                                                                                      | 2.7 | 8         |
| 71 | The effects of intervessel pit characteristics on xylem hydraulic efficiency and photosynthesis in hemiepiphytic and nonâ€hemiepiphytic Ficus species. Physiologia Plantarum, 2019, 167, 661-675.   | 5.2 | 8         |
| 72 | Evolution of wood anatomical characters in Nepenthes and close relatives of Caryophyllales. Annals of Botany, 2017, 119, 1179-1193.                                                                 | 2.9 | 7         |

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Inflorescence lignification of natural species and horticultural hybrids of Phalaenopsis orchids.<br>Scientia Horticulturae, 2022, 295, 110845.                                                                  | 3.6 | 7         |
| 74 | Q-NET – a new scholarly network on quantitative wood anatomy. Dendrochronologia, 2021, 70,<br>125890.                                                                                                            | 2.2 | 6         |
| 75 | A comparative ultrastructural study of pit membranes with plasmodesmata associated thickenings in four angiosperm species. Protoplasma, 2008, 233, 255-262.                                                      | 2.1 | 5         |
| 76 | Description and evolution of wood anatomical characters in the ebony wood genus Diospyros and its close relatives (Ebenaceae): a first step towards combatting illegal logging. IAWA Journal, 2020, 41, 577-619. | 2.7 | 4         |
| 77 | wood anatomy news: Message from the outgoing Executive Secretary. IAWA Journal, 2017, 38, 137-140.                                                                                                               | 2.7 | 0         |