
Montserrat Duenas-Paton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/478934/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Survey of Modulation of Gut Microbiota by Dietary Polyphenols. BioMed Research International, 2015, 2015, 1-15.	0.9	288
2	Bioactivity and chemical characterization in hydrophilic and lipophilic compounds of Chenopodium ambrosioides L Journal of Functional Foods, 2013, 5, 1732-1740.	1.6	269
3	Phenolic acids determination by HPLC–DAD–ESI/MS in sixteen different Portuguese wild mushrooms species. Food and Chemical Toxicology, 2009, 47, 1076-1079.	1.8	228
4	Germination as a process to increase the polyphenol content and antioxidant activity of lupin seeds (Lupinus angustifolius L.). Food Chemistry, 2009, 117, 599-607.	4.2	173
5	Phenolic profiles of cultivated, in vitro cultured and commercial samples of Melissa officinalis L. infusions. Food Chemistry, 2013, 136, 1-8.	4.2	172
6	Bioactive phenolic compounds of cowpeas (Vigna sinensisL). Modifications by fermentation with natural microflora and withLactobacillus plantarumATCC 14917. Journal of the Science of Food and Agriculture, 2005, 85, 297-304.	1.7	158
7	Characterisation of phenolic compounds in wild fruits from Northeastern Portugal. Food Chemistry, 2013, 141, 3721-3730.	4.2	157
8	Assessment of in vitro antioxidant capacity of the seed coat and the cotyledon of legumes in relation to their phenolic contents. Food Chemistry, 2006, 98, 95-103.	4.2	156
9	Antioxidant evaluation of O-methylated metabolites of catechin, epicatechin and quercetin. Journal of Pharmaceutical and Biomedical Analysis, 2010, 51, 443-449.	1.4	147
10	Anthocyanin composition in fig (Ficus carica L.). Journal of Food Composition and Analysis, 2008, 21, 107-115.	1.9	132
11	Impact of cooking and germination on phenolic composition and dietary fibre fractions in dark beans (Phaseolus vulgaris L.) and lentils (Lens culinaris L.). LWT - Food Science and Technology, 2016, 66, 72-78.	2.5	128
12	Fermentation enhances the content of bioactive compounds in kidney bean extracts. Food Chemistry, 2015, 172, 343-352.	4.2	125
13	Studies on the copigmentation between anthocyanins and flavan-3-ols and their influence in the colour expression of red wine. Food Chemistry, 2009, 114, 649-656.	4.2	122
14	Characterization of phenolic compounds in flowers of wild medicinal plants from Northeastern Portugal. Food and Chemical Toxicology, 2012, 50, 1576-1582.	1.8	118
15	Chemical composition of wild and commercial Achillea millefolium L. and bioactivity of the methanolic extract, infusion and decoction. Food Chemistry, 2013, 141, 4152-4160.	4.2	118
16	Elucidation of (â^')-epicatechin metabolites after ingestion of chocolate by healthy humans. Free Radical Biology and Medicine, 2012, 53, 787-795.	1.3	116
17	Nitric Oxide Plays a Role in Stem Cell Niche Homeostasis through Its Interaction with Auxin. Plant Physiology, 2014, 166, 1972-1984.	2.3	114
18	Occurrence of phenolic compounds in the seed coat and the cotyledon of peas (Pisum sativum L.). European Food Research and Technology, 2004, 219, 116.	1.6	113

#	Article	IF	CITATIONS
19	Phenolic composition of the cotyledon and the seed coat of lentils (Lens culinaris L.). European Food Research and Technology, 2002, 215, 478-483.	1.6	112
20	Nutrients, phytochemicals and bioactivity of wild Roman chamomile: A comparison between the herb and its preparations. Food Chemistry, 2013, 136, 718-725.	4.2	112
21	Proanthocyanidin Composition in the Seed Coat of Lentils (Lens culinarisL.). Journal of Agricultural and Food Chemistry, 2003, 51, 7999-8004.	2.4	111
22	Vascular deconjugation of quercetin glucuronide: The flavonoid paradox revealed?. Molecular Nutrition and Food Research, 2011, 55, 1780-1790.	1.5	110
23	Chemical characterisation and bioactive properties of Prunus avium L.: The widely studied fruits and the unexplored stems. Food Chemistry, 2015, 173, 1045-1053.	4.2	107
24	Effect of cooking and germination on phenolic composition and biological properties of dark beans (Phaseolus vulgaris L.). Food Chemistry, 2013, 138, 547-555.	4.2	106
25	Glucuronidated Quercetin Lowers Blood Pressure in Spontaneously Hypertensive Rats via Deconjugation. PLoS ONE, 2012, 7, e32673.	1.1	104
26	Flavonoid metabolites transport across a human BBB model. Food Chemistry, 2014, 149, 190-196.	4.2	104
27	Antioxidant Activity of a Red Lentil Extract and Its Fractions. International Journal of Molecular Sciences, 2009, 10, 5513-5527.	1.8	98
28	Chemical composition and antioxidant activity of dried powder formulations of Agaricus blazei and Lentinus edodes. Food Chemistry, 2013, 138, 2168-2173.	4.2	97
29	Phenolic profiles of in vivo and in vitro grown Coriandrum sativum L Food Chemistry, 2012, 132, 841-848.	4.2	96
30	Polyphenols restore endothelial function in DOCA-salt hypertension: Role of endothelin-1 and NADPH oxidase. Free Radical Biology and Medicine, 2007, 43, 462-473.	1.3	95
31	Flavonoid Composition and Antitumor Activity of Bee Bread Collected in Northeast Portugal. Molecules, 2017, 22, 248.	1.7	94
32	Characterization and Quantification of Phenolic Compounds in Four Tomato (Lycopersicon) Tj ETQq0 0 0 rgBT /Ov Nutrition, 2012, 67, 229-234.	verlock 10 1.4	Tf 50 227 T 92
33	Antifungal activity and detailed chemical characterization of Cistus ladanifer phenolic extracts. Industrial Crops and Products, 2013, 41, 41-45.	2.5	89
34	Studies on Modulation of Gut Microbiota by Wine Polyphenols: From Isolated Cultures to Omic Approaches. Antioxidants, 2015, 4, 1-21.	2.2	80
35	Characterization of Pigments from Different High Speed Countercurrent Chromatography Wine Fractions. Journal of Agricultural and Food Chemistry, 2005, 53, 4536-4546.	2.4	79
36	Evaluation of Phenolic Profile and Antioxidant Properties of Pardina Lentil As Affected by Industrial Dehydration. Journal of Agricultural and Food Chemistry, 2010, 58, 10101-10108.	2.4	77

#	Article	IF	CITATIONS
37	Infusion and decoction of wild German chamomile: Bioactivity and characterization of organic acids and phenolic compounds. Food Chemistry, 2013, 136, 947-954.	4.2	77
38	Betalains and phenolic compounds profiling and antioxidant capacity of pitaya (Stenocereus spp.) fruit from two species (S. Pruinosus and S. stellatus). Food Chemistry, 2017, 234, 111-118.	4.2	77
39	Formation of anthocyanin–flavanol adducts in model solutions. Analytica Chimica Acta, 2006, 563, 15-25.	2.6	72
40	Characterization of phenolic compounds in wild medicinal flowers from Portugal by HPLC–DAD–ESI/MS and evaluation of antifungal properties. Industrial Crops and Products, 2013, 44, 104-110.	2.5	72
41	Effect of germination and elicitation on phenolic composition and bioactivity of kidney beans. Food Research International, 2015, 70, 55-63.	2.9	70
42	Use of HPLC–DAD–ESI/MS to profile phenolic compounds in edible wild greens from Portugal. Food Chemistry, 2011, 127, 169-173.	4.2	69
43	Effects of O-methylated metabolites of quercetin on oxidative stress, thermotolerance, lifespan and bioavailability on Caenorhabditis elegans. Food and Function, 2011, 2, 445.	2.1	68
44	Antioxidant activity, ascorbic acid, phenolic compounds and sugars of wild and commercial Tuberaria lignosa samples: Effects of drying and oral preparation methods. Food Chemistry, 2012, 135, 1028-1035.	4.2	68
45	Colour implications of self-association processes of wine anthocyanins. European Food Research and Technology, 2008, 226, 483-490.	1.6	67
46	Antioxidant activity of phenolic compounds identified in sunflower seeds. European Food Research and Technology, 2012, 235, 221-230.	1.6	67
47	Phenolic compounds in a Spanish red wine aged in barrels made of Spanish, French and American oak wood. European Food Research and Technology, 2003, 216, 150-156.	1.6	65
48	Antioxidant properties of major metabolites of quercetin. European Food Research and Technology, 2011, 232, 103-111.	1.6	64
49	Leaves and decoction of Juglans regia L.: Different performances regarding bioactive compounds and in vitro antioxidant and antitumor effects. Industrial Crops and Products, 2013, 51, 430-436.	2.5	64
50	Differential effect of quercetin on cisplatin-induced toxicity in kidney and tumor tissues. Food and Chemical Toxicology, 2017, 107, 226-236.	1.8	63
51	Changes in the content of bioactive polyphenolic compounds of lentils by the action of exogenous enzymes. Effect on their antioxidant activity. Food Chemistry, 2007, 101, 90-97.	4.2	62
52	Characterization of phenolic compounds and antioxidant properties of Glycyrrhiza glabra L. rhizomes and roots. RSC Advances, 2015, 5, 26991-26997.	1.7	61
53	Crataegus monogyna buds and fruits phenolic extracts: Growth inhibitory activity on human tumor cell lines and chemical characterization by HPLC–DAD–ESI/MS. Food Research International, 2012, 49, 516-523.	2.9	60
54	Optimization of germination time and temperature to maximize the content of bioactive compounds and the antioxidant activity of purple corn (Zea mays L.) by response surface methodology. LWT - Food Science and Technology, 2017, 76, 236-244.	2.5	59

#	Article	IF	CITATIONS
55	Phenolic Profile and Antioxidant Capacity of Chickpeas (Cicer arietinum L.) as Affected by a Dehydration Process. Plant Foods for Human Nutrition, 2011, 66, 187-195.	1.4	56
56	Extraction and Isolation of Phenolic Compounds. Methods in Molecular Biology, 2012, 864, 427-464.	0.4	55
57	Nutritional and antioxidant contributions of Laurus nobilis L. leaves: Would be more suitable a wild or a cultivated sample?. Food Chemistry, 2014, 156, 339-346.	4.2	55
58	Preparation of quercetin glucuronides and characterization by HPLC–DAD–ESI/MS. European Food Research and Technology, 2008, 227, 1069-1076.	1.6	54
59	Preparation and Characterization of Catechin Sulfates, Glucuronides, and Methylethers with Metabolic Interest. Journal of Agricultural and Food Chemistry, 2009, 57, 1231-1238.	2.4	54
60	Ultrafiltration as alternative purification procedure for the characterization of low and high molecular-mass phenolics from almond skins. Analytica Chimica Acta, 2008, 609, 241-251.	2.6	48
61	Exploring the antioxidant potential of Helichrysum stoechas (L.) Moench phenolic compounds for cosmetic applications: Chemical characterization, microencapsulation and incorporation into a moisturizer. Industrial Crops and Products, 2014, 53, 330-336.	2.5	48
62	Effect of the addition of mannoproteins on the interaction between wine flavonols and salivary proteins. Food Chemistry, 2018, 264, 226-232.	4.2	48
63	Oxidative Status of Stressed Caenorhabditis elegans Treated with Epicatechin. Journal of Agricultural and Food Chemistry, 2012, 60, 8911-8916.	2.4	47
64	Influence of catechins and their methylated metabolites on lifespan and resistance to oxidative and thermal stress of Caenorhabditis elegans and epicatechin uptake. Food Research International, 2012, 46, 514-521.	2.9	47
65	Deglycosylation is a key step in biotransformation and lifespan effects of quercetin-3-O-glucoside in Caenorhabditis elegans. Pharmacological Research, 2013, 76, 41-48.	3.1	47
66	Bioactive Phenolic Compounds of Soybean (Glycine max cv. Merit): Modifications by Different Microbiological Fermentations. Polish Journal of Food and Nutrition Sciences, 2012, 62, 241-250.	0.6	44
67	Study of Zalema Grape Pomace: Phenolic Composition and Biological Effects in Caenorhabditis elegans. Journal of Agricultural and Food Chemistry, 2013, 61, 5114-5121.	2.4	44
68	Epicatechin modulates stress-resistance in C. elegans via insulin/IGF-1 signaling pathway. PLoS ONE, 2019, 14, e0199483.	1.1	44
69	UVâ^'Visible Spectroscopic Investigation of the 8,8-Methylmethine Catechin-malvidin 3-Glucoside Pigments in Aqueous Solution:Â Structural Transformations and Molecular Complexation with Chlorogenic Acid. Journal of Agricultural and Food Chemistry, 2006, 54, 189-196.	2.4	42
70	HPLC-DAD-ESI/MS identification of anthocyanins in Dioscorea trifida L. yam tubers (purple sachapapa). European Food Research and Technology, 2010, 230, 745-752.	1.6	42
71	Gamma irradiation improves the extractability of phenolic compounds in Ginkgo biloba L Industrial Crops and Products, 2015, 74, 144-149.	2.5	40
72	Response surface optimisation of germination conditions to improve the accumulation of bioactive compounds and the antioxidant activity in quinoa. International Journal of Food Science and Technology, 2018, 53, 516-524.	1.3	39

#	Article	IF	CITATIONS
73	Influence of wood origin in the polyphenolic composition of a Spanish red wine aging in bottle, after storage in barrels of Spanish, French and American oak wood. European Food Research and Technology, 2007, 224, 695-705.	1.6	35
74	Formation of Vitisins and Anthocyanin–Flavanol Adducts during Red Grape Drying. Journal of Agricultural and Food Chemistry, 2012, 60, 6866-6874.	2.4	35
75	Anthocyanin and phenolic characterization, chemical composition and antioxidant activity of chagalapoli (Ardisia compressa K.) fruit: A tropical source of natural pigments. Food Research International, 2015, 70, 151-157.	2.9	35
76	Effect of Dry Heat Puffing on Nutritional Composition, Fatty Acid, Amino Acid and Phenolic Profiles of Pseudocereals Grains. Polish Journal of Food and Nutrition Sciences, 2018, 68, 289-297.	0.6	34
77	Characterization of Sulfated Quercetin and Epicatechin Metabolites. Journal of Agricultural and Food Chemistry, 2012, 60, 3592-3598.	2.4	30
78	Individual contributions of Savinase and Lactobacillus plantarum to lentil functionalization during alkaline pH-controlled fermentation. Food Chemistry, 2018, 257, 341-349.	4.2	29
79	Bioavailability of Melatonin from Lentil Sprouts and Its Role in the Plasmatic Antioxidant Status in Rats. Foods, 2020, 9, 330.	1.9	29
80	Agricultural and Food Waste: Analysis, Characterization and Extraction of Bioactive Compounds and Their Possible Utilization. Foods, 2020, 9, 817.	1.9	29
81	InÂvitro approach for evaluation of carob by-products as source bioactive ingredients with potential to attenuate metabolic syndrome (MetS). Heliyon, 2019, 5, e01175.	1.4	28
82	Effect of soaking and fermentation on content of phenolic compounds of soybean (<i>Glycine max</i>) Tj ETQc and Nutrition, 2015, 66, 203-209.	0 0 0 rgBT 1.3	Г /Overlock 10 27
83	Molecular Approach to the Synergistic Effect on Astringency Elicited by Mixtures of Flavanols. Journal of Agricultural and Food Chemistry, 2017, 65, 6425-6433.	2.4	26
84	Optimizing germination conditions to enhance the accumulation of bioactive compounds and the antioxidant activity of kiwicha (Amaranthus caudatus) using response surface methodology. LWT - Food Science and Technology, 2017, 76, 245-252.	2.5	25
85	Characterization and Modulation of Glucose Uptake in a Human Blood–Brain Barrier Model. Journal of Membrane Biology, 2013, 246, 669-677.	1.0	22
86	Exploring Target Genes Involved in the Effect of Quercetin on the Response to Oxidative Stress in Caenorhabditis elegans. Antioxidants, 2019, 8, 585.	2.2	20
87	Synergistic effect of mixture of two proline-rich-protein salivary families (aPRP and bPRP) on the interaction with wine flavanols. Food Chemistry, 2019, 272, 210-215.	4.2	18
88	Synergetic Hepatoprotective Effect of Phenolic Fractions Obtained from <i>Ficus Carica</i> Dried Fruit and Extra Virgin Olive Oil on CCL ₄ -Induced Oxidative Stress and Hepatotoxicity in Rats. Journal of Food Biochemistry, 2016, 40, 507-516.	1.2	17
89	Combination of pH-controlled fermentation in mild acidic conditions and enzymatic hydrolysis by Savinase to improve metabolic health-promoting properties of lentil. Journal of Functional Foods, 2018, 48, 9-18.	1.6	17
90	Bioactivity and phytochemical characterization of Arenaria montana L Food and Function, 2014, 5, 1848-1855.	2.1	16

#	Article	IF	CITATIONS
91	Phenolic composition and antioxidant activity of mocan seeds (Visnea mocanera L.f) Food Chemistry, 2003, 82, 373-379.	4.2	15
92	Bryonia dioica, Tamus communis and Lonicera periclymenum fruits: Characterization in phenolic compounds and incorporation of their extracts in hydrogel formulations for topical application. Industrial Crops and Products, 2013, 49, 169-176.	2.5	15
93	A comparison of the bioactivity and phytochemical profile of three different cultivars of globe amaranth: red, white, and pink. Food and Function, 2016, 7, 679-688.	2.1	15
94	Influence of the action of exogenous enzymes on the polyphenolic composition of pea: Effect on the antioxidant activity. European Food Research and Technology, 2007, 225, 493-500.	1.6	13
95	Flavonoids as dopaminergic neuromodulators. Molecular Nutrition and Food Research, 2016, 60, 495-501.	1.5	13
96	Determination by HPLC-DAD-ESI/MSn of phenolic compounds in Andean tubers grown in Ecuador. Journal of Food Composition and Analysis, 2019, 84, 103258.	1.9	13
97	Effects of different industrial processes on the phenolic composition of white and brown teff (Eragrostis tef (Zucc.) Trotter). Food Chemistry, 2021, 335, 127331.	4.2	10
98	Influence of Processing in the Phenolic Composition and Health-Promoting Properties of Lentils (<i>Lens culinaris</i> L.). Journal of Food Processing and Preservation, 2017, 41, e13113.	0.9	9
99	Identification by HPLC-MS of Anthocyanin Derivatives in Raisins. Journal of Chemistry, 2013, 2013, 1-7.	0.9	8
100	Analysis of Flavonoids in Foods and Biological Samples. Mini-Reviews in Medicinal Chemistry, 2011, 11, 1239-1255.	1.1	7
101	In vitroevaluation of the antioxidant and anti-inflammatory activities of sulphated metabolites of catechins Evaluaciónin vitrode las actividades antioxidante y antiinflamatoria de metabolitos sulfatados de catequinas. CYTA - Journal of Food, 2011, 9, 257-264.	0.9	6
102	Antioxidant Activity and Phenolic Composition of a Red Bean (Phasoelus vulgaris) Extract and its Fractions. Natural Product Communications, 2017, 12, 1934578X1701200.	0.2	6
103	Qualitative and quantitative analyses of phenolic compounds by HPLC–DAD–ESI/MS in Tunisian Pistacia vera L. Leaves unveiled a rich source of phenolic compounds with a significant antioxidant potential. Journal of Food Measurement and Characterization, 2019, 13, 2448-2460.	1.6	6
104	Applications of Natural Products in Food. Foods, 2021, 10, 300.	1.9	6
105	COMPARATIVE STUDY OF THE PHENOLIC COMPOSITION IN LENTILS PROCESSED WITH AND WITHOUT ADDITION OF COMMERCIAL TANNASE. Journal of Food Processing and Preservation, 2009, 33, 695-713.	0.9	5
106	Phenolic metabolites from 5,000-year-old coprolites of Myotragus balearicus, an extinct insular bovid. Quaternary International, 2020, 554, 143-149.	0.7	0
107	Gastrointestinal Digestion and Absorption of Antioxidant Phenolic Compounds and Caffeine from the Coffee Pulp under Simulated Conditions. , 2022, 12, .		0