## Peter M Loskill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4789253/publications.pdf Version: 2024-02-01



DETED M LOSKILI

| #  | Article                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | lsolation, Integration, and Culture of Human Mature Adipocytes Leveraging Organ-on-Chip<br>Technology. Methods in Molecular Biology, 2022, 2373, 297-313.                           | 0.4 | 0         |
| 2  | Development of a bi-layered cryogenic electrospun polylactic acid scaffold to study calcific aortic valve disease in a 3D co-culture model. Acta Biomaterialia, 2022, 140, 364-378. | 4.1 | 7         |
| 3  | Human immunocompetent choroid-on-chip: a novel tool for studying ocular effects of biological drugs. Communications Biology, 2022, 5, 52.                                           | 2.0 | 14        |
| 4  | Studying metabolism with multi-organ chips: new tools for disease modelling, pharmacokinetics and pharmacodynamics. Open Biology, 2022, 12, 210333.                                 | 1.5 | 12        |
| 5  | Organ-on-Chip. , 2022, , 1127-1144.                                                                                                                                                 |     | 0         |
| 6  | Microphysiological stem cell models of the human heart. Materials Today Bio, 2022, 14, 100259.                                                                                      | 2.6 | 4         |
| 7  | Noninvasive Physical Plasma as Innovative and Tissue-Preserving Therapy for Women Positive for<br>Cervical Intraepithelial Neoplasia. Cancers, 2022, 14, 1933.                      | 1.7 | 20        |
| 8  | Autologous Human Immunocompetent White Adipose Tissueâ€onâ€Chip. Advanced Science, 2022, 9,<br>e2104451.                                                                            | 5.6 | 18        |
| 9  | Fusing spheroids to aligned μ-tissues in a heart-on-chip featuring oxygen sensing and electrical pacing capabilities. Materials Today Bio, 2022, 15, 100280.                        | 2.6 | 15        |
| 10 | Developer's Guide to an Organ-on-Chip Model. ACS Biomaterials Science and Engineering, 2022, 8,<br>4643-4647.                                                                       | 2.6 | 12        |
| 11 | Collagen and Endothelial Cell Coculture Improves β-Cell Functionality and Rescues Pancreatic<br>Extracellular Matrix. Tissue Engineering - Part A, 2021, 27, 977-991.               | 1.6 | 15        |
| 12 | Integration of Electrospun Membranes into Low-Absorption Thermoplastic Organ-on-Chip. ACS<br>Biomaterials Science and Engineering, 2021, 7, 3006-3017.                              | 2.6 | 15        |
| 13 | The Inflammatory Profile of Obesity and the Role on Pulmonary Bacterial and Viral Infections.<br>International Journal of Molecular Sciences, 2021, 22, 3456.                       | 1.8 | 24        |
| 14 | Facile Patterning of Thermoplastic Elastomers and Robust Bonding to Glass and Thermoplastics for<br>Microfluidic Cell Culture and Organ-on-Chip. Micromachines, 2021, 12, 575.      | 1.4 | 21        |
| 15 | Immunocompetent cancer-on-chip models to assess immuno-oncology therapy. Advanced Drug Delivery<br>Reviews, 2021, 173, 281-305.                                                     | 6.6 | 38        |
| 16 | Beyond PDMS and Membranes: New Materials for Organ-on-a-Chip Devices. ACS Biomaterials Science and Engineering, 2021, 7, 2861-2863.                                                 | 2.6 | 23        |
| 17 | Human stem cell-based retina on chip as new translational model for validation of AAV retinal gene therapy vectors. Stem Cell Reports, 2021, 16, 2242-2256.                         | 2.3 | 27        |
| 18 | Challenging the pipeline. Stem Cell Reports, 2021, 16, 2033-2037.                                                                                                                   | 2.3 | 8         |

PETER M LOSKILL

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Membrane integration into PDMS-free microfluidic platforms for organ-on-chip and analytical chemistry applications. Lab on A Chip, 2021, 21, 1866-1885.                                                            | 3.1 | 39        |
| 20 | Peristaltic on-chip pump for tunable media circulation and whole blood perfusion in PDMS-free organ-on-chip and Organ-Disc systems. Lab on A Chip, 2021, 21, 3963-3978.                                            | 3.1 | 17        |
| 21 | Non-invasive marker-independent high content analysis of a microphysiological human<br>pancreas-on-a-chip model. Matrix Biology, 2020, 85-86, 205-220.                                                             | 1.5 | 72        |
| 22 | Organ-on-a-disc: A platform technology for the centrifugal generation and culture of<br>microphysiological 3D cell constructs amenable for automation and parallelization. APL<br>Bioengineering, 2020, 4, 046101. | 3.3 | 12        |
| 23 | Fluorescence lifetime metabolic mapping of hypoxiaâ€induced damage in pancreatic pseudoâ€islets. Journal of Biophotonics, 2020, 13, e202000375.                                                                    | 1.1 | 8         |
| 24 | How Can Microfluidic and Microfabrication Approaches Make Experiments More Physiologically Relevant?. Cell Systems, 2020, 11, 209-211.                                                                             | 2.9 | 11        |
| 25 | Facile Macrocyclic Polyphenol Barrier Coatings for PDMS Microfluidic Devices. Advanced Functional<br>Materials, 2020, 30, 2001274.                                                                                 | 7.8 | 12        |
| 26 | WAT-on-a-chip integrating human mature white adipocytes for mechanistic research and pharmaceutical applications. Scientific Reports, 2020, 10, 6666.                                                              | 1.6 | 58        |
| 27 | Biology-inspired microphysiological systems to advance medicines for patient benefit and animal welfare. ALTEX: Alternatives To Animal Experimentation, 2020, 37, 365-394.                                         | 0.9 | 123       |
| 28 | Stem cell based human organ-on-a-chip models for drug discovery and development. Advanced Drug Delivery Reviews, 2019, 140, 1-2.                                                                                   | 6.6 | 3         |
| 29 | Impact of organ-on-a-chip technology on pharmaceutical R&D costs. Drug Discovery Today, 2019, 24, 1720-1724.                                                                                                       | 3.2 | 105       |
| 30 | Dose-Dependent Tissue-Level Characterization of a Medical Atmospheric Pressure Argon Plasma Jet.<br>ACS Applied Materials & Interfaces, 2019, 11, 19841-19853.                                                     | 4.0 | 36        |
| 31 | Engineering Tissues from Induced Pluripotent Stem Cells. Tissue Engineering - Part A, 2019, 25, 707-710.                                                                                                           | 1.6 | 11        |
| 32 | User-Friendly and Parallelized Generation of Human Induced Pluripotent Stem Cell-Derived<br>Microtissues in a Centrifugal Heart-on-a-Chip. Tissue Engineering - Part A, 2019, 25, 786-798.                         | 1.6 | 53        |
| 33 | Stem-cell based organ-on-a-chip models for diabetes research. Advanced Drug Delivery Reviews, 2019,<br>140, 101-128.                                                                                               | 6.6 | 55        |
| 34 | Organ-on-a-chip technologies that can transform ophthalmic drug discovery and disease modeling.<br>Expert Opinion on Drug Discovery, 2019, 14, 47-57.                                                              | 2.5 | 40        |
| 35 | Building blocks for a European Organ-on-Chip roadmap. ALTEX: Alternatives To Animal Experimentation, 2019, 36, 481-492.                                                                                            | 0.9 | 41        |
| 36 | Merging organoid and organ-on-a-chip technology to generate complex multi-layer tissue models in a human retina-on-a-chip platform. ELife, 2019, 8, .                                                              | 2.8 | 256       |

PETER M LOSKILL

| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Technische Heimaten f $	ilde{A}$ <sup>1</sup> /4r menschliche Zellen. , 2019, , 67-94.                                                                                                                                                |      | 0         |
| 38 | High-throughput organ-on-a-chip systems: Current status and remaining challenges. Current Opinion<br>in Biomedical Engineering, 2018, 6, 33-41.                                                                                       | 1.8  | 113       |
| 39 | Organâ€onâ€aâ€Chip Systems for Women's Health Applications. Advanced Healthcare Materials, 2018, 7,<br>1700550.                                                                                                                       | 3.9  | 31        |
| 40 | WAT-on-a-chip: a physiologically relevant microfluidic system incorporating white adipose tissue. Lab<br>on A Chip, 2017, 17, 1645-1654.                                                                                              | 3.1  | 93        |
| 41 | Integration concepts for multi-organ chips: how to maintain flexibility?!. Future Science OA, 2017, 3, FSO180.                                                                                                                        | 0.9  | 60        |
| 42 | Miniaturized iPS-Cell-Derived Cardiac Muscles for Physiologically Relevant Drug Response Analyses.<br>Scientific Reports, 2016, 6, 24726.                                                                                             | 1.6  | 191       |
| 43 | Multivalent hyaluronic acid bioconjugates improve sFlt-1 activity inÂvitro. Biomaterials, 2016, 93, 95-105.                                                                                                                           | 5.7  | 25        |
| 44 | In vitro cardiac tissue models: Current status and future prospects. Advanced Drug Delivery Reviews,<br>2016, 96, 203-213.                                                                                                            | 6.6  | 150       |
| 45 | μOrgano: A Lego®-Like Plug & Play System for Modular Multi-Organ-Chips. PLoS ONE, 2015, 10,<br>e0139587.                                                                                                                              | 1.1  | 94        |
| 46 | Human iPSC-based Cardiac Microphysiological System For Drug Screening Applications. Scientific Reports, 2015, 5, 8883.                                                                                                                | 1.6  | 411       |
| 47 | A detailed guideline for the fabrication of single bacterial probes used for atomic force spectroscopy.<br>European Physical Journal E, 2015, 38, 140.                                                                                | 0.7  | 27        |
| 48 | Directing cell migration and organization via nanocrater-patterned cell-repellent interfaces. Nature<br>Materials, 2015, 14, 918-923.                                                                                                 | 13.3 | 159       |
| 49 | Self-organizing human cardiac microchambers mediated by geometric confinement. Nature<br>Communications, 2015, 6, 7413.                                                                                                               | 5.8  | 167       |
| 50 | Stochastic binding of Staphylococcus aureus to hydrophobic surfaces. Soft Matter, 2015, 11, 8913-8919.                                                                                                                                | 1.2  | 35        |
| 51 | Automated Video-Based Analysis of Contractility and Calcium Flux in Human-Induced Pluripotent Stem<br>Cell-Derived Cardiomyocytes Cultured over Different Spatial Scales. Tissue Engineering - Part C:<br>Methods, 2015, 21, 467-479. | 1.1  | 232       |
| 52 | Hydrophobic interaction governs unspecific adhesion of staphylococci: a single cell force spectroscopy study. Beilstein Journal of Nanotechnology, 2014, 5, 1501-1512.                                                                | 1.5  | 47        |
| 53 | Reduction of the Peptidoglycan Crosslinking Causes a Decrease in Stiffness of the Staphylococcus aureus Cell Envelope. Biophysical Journal, 2014, 107, 1082-1089.                                                                     | 0.2  | 83        |
| 54 | Three-dimensional filamentous human diseased cardiac tissue model. Biomaterials, 2014, 35, 1367-1377.                                                                                                                                 | 5.7  | 102       |

PETER M LOSKILL

| #  | Article                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Impact of van der Waals Interactions on Single Asperity Friction. Physical Review Letters, 2013, 111, 035502.                                                          | 2.9 | 50        |
| 56 | Reduced Adhesion of Oral Bacteria on Hydroxyapatite by Fluoride Treatment. Langmuir, 2013, 29, 5528-5533.                                                              | 1.6 | 38        |
| 57 | Human induced pluripotent stem cell-based microphysiological tissue models of myocardium and liver for drug development. Stem Cell Research and Therapy, 2013, 4, S14. | 2.4 | 48        |
| 58 | Macroscale adhesion of gecko setae reflects nanoscale differences in subsurface composition.<br>Journal of the Royal Society Interface, 2013, 10, 20120587.            | 1.5 | 42        |
| 59 | Is adhesion superficial? Silicon wafers as a model system to study van der Waals interactions.<br>Advances in Colloid and Interface Science, 2012, 179-182, 107-113.   | 7.0 | 36        |
| 60 | Influence of the Subsurface Composition of a Material on the Adhesion of Staphylococci. Langmuir, 2012, 28, 7242-7248.                                                 | 1.6 | 32        |
| 61 | Subsurface Influence on the Structure of Protein Adsorbates as Revealed by in Situ X-ray Reflectivity.<br>Langmuir, 2012, 28, 7747-7756.                               | 1.6 | 45        |
| 62 | Organ-on-Chip: Playing LEGO® With Mini-Organs to Reduce Animal Testing and Make Medicines Safer.<br>Frontiers for Young Minds, 0, 8, .                                 | 0.8 | 0         |