
Albert Romano-Rodriguez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4789067/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The complete Raman spectrum of nanometric SnO2 particles. Journal of Applied Physics, 2001, 90, 1550-1557.	2.5	686
2	Synthesis and applications of one-dimensional semiconductors. Progress in Materials Science, 2010, 55, 563-627.	32.8	450
3	Morphological analysis of nanocrystalline SnO2 for gas sensor applications. Sensors and Actuators B: Chemical, 1996, 31, 1-8.	7.8	195
4	Equivalence between thermal and room temperature UV light-modulated responses of gas sensors based on individual SnO2 nanowires. Sensors and Actuators B: Chemical, 2009, 140, 337-341.	7.8	195
5	Ultralow power consumption gas sensors based on self-heated individual nanowires. Applied Physics Letters, 2008, 93, .	3.3	184
6	The effects of electron–hole separation on the photoconductivity of individual metal oxide nanowires. Nanotechnology, 2008, 19, 465501.	2.6	169
7	High response and stability in CO and humidity measures using a single SnO2 nanowire. Sensors and Actuators B: Chemical, 2007, 121, 3-17.	7.8	165
8	Influence of the catalytic introduction procedure on the nano-SnO2 gas sensor performances. Sensors and Actuators B: Chemical, 2001, 79, 98-106.	7.8	162
9	Analysis of buried etch-stop layers in silicon by nitrogen-ion implantation. Journal of Micromechanics and Microengineering, 1993, 3, 143-145.	2.6	160
10	Microâ€Raman study of stress distribution in local isolation structures and correlation with transmission electron microscopy. Journal of Applied Physics, 1992, 71, 898-906.	2.5	149
11	Fabrication and electrical characterization of circuits based on individual tin oxide nanowires. Nanotechnology, 2006, 17, 5577-5583.	2.6	135
12	Toward a Systematic Understanding of Photodetectors Based on Individual Metal Oxide Nanowires. Journal of Physical Chemistry C, 2008, 112, 14639-14644.	3.1	130
13	Correlation between XPS, Raman and TEM measurements and the gas sensitivity of Pt and Pd doped SnO 2 based gas sensors. Fresenius' Journal of Analytical Chemistry, 1998, 361, 110-114.	1.5	116
14	Electrical properties of individual tin oxide nanowires contacted to platinum electrodes. Physical Review B, 2007, 76, .	3.2	105
15	Nanoparticle engineering for gas sensor optimisation: improved sol–gel fabricated nanocrystalline SnO2 thick film gas sensor for NO2 detection by calcination, catalytic metal introduction and grinding treatments. Sensors and Actuators B: Chemical, 1999, 60, 125-137.	7.8	97
16	Insight into the Role of Oxygen Diffusion in the Sensing Mechanisms of SnO ₂ Nanowires. Advanced Functional Materials, 2008, 18, 2990-2994.	14.9	96
17	Chemical Vapor Growth of Oneâ€dimensional Magnetite Nanostructures. Advanced Materials, 2008, 20, 1550-1554.	21.0	92
18	The aging effect on SnO2–Au thin film sensors: electrical and structural characterization. Thin Solid Films, 2000, 371, 249-253.	1.8	89

#	Article	IF	CITATIONS
19	Vibrational and crystalline properties of polymorphicCuInC2(C=Se,S)chalcogenides. Physical Review B, 2005, 71, .	3.2	86
20	Influence on the gas sensor performances of the metal chemical states introduced by impregnation of calcinated SnO2 sol–gel nanocrystals. Sensors and Actuators B: Chemical, 2000, 68, 94-99.	7.8	77
21	MicroRaman scattering from polycrystalline CuInS 2 films: structural analysis. Thin Solid Films, 2000, 361-362, 208-212.	1.8	77
22	On the role of individual metal oxide nanowires in the scaling down of chemical sensors. Physical Chemistry Chemical Physics, 2009, 11, 7105.	2.8	77
23	Polymorphism in CuInS2 epilayers: Origin of additional Raman modes. Applied Physics Letters, 2002, 80, 562-564.	3.3	74
24	Portable microsensors based on individual SnO ₂ nanowires. Nanotechnology, 2007, 18, 495501.	2.6	68
25	Raman microprobe characterization of electrodeposited S-rich Culn(S,Se)2 for photovoltaic applications: Microstructural analysis. Journal of Applied Physics, 2007, 101, 103517.	2.5	66
26	A model for the response towards oxidizing gases of photoactivated sensors based on individual SnO2 nanowires. Physical Chemistry Chemical Physics, 2009, 11, 10881.	2.8	63
27	Short-channel radiation effect in 60 MeV proton irradiated 0.13μm CMOS transistors. IEEE Transactions on Nuclear Science, 2003, 50, 2426-2432.	2.0	61
28	Water vapor detection with individual tin oxide nanowires. Nanotechnology, 2007, 18, 424016.	2.6	59
29	Fabrication of metallic contacts to nanometre-sized materials using a focused ion beam (FIB). Materials Science and Engineering C, 2006, 26, 1063-1066.	7.3	57
30	A fast preparation technique for high-quality plan view and cross-section TEM specimens of semiconducting materials. Ultramicroscopy, 1989, 31, 183-192.	1.9	55
31	Ionâ€beam synthesis of amorphous SiC films: Structural analysis and recrystallization. Journal of Applied Physics, 1996, 79, 6907-6913.	2.5	51
32	Microstructure and morphology of tin dioxide multilayer thin film gas sensors. Sensors and Actuators B: Chemical, 1997, 44, 268-274.	7.8	51
33	Detection of amines with chromium-doped WO3 mesoporous material. Sensors and Actuators B: Chemical, 2009, 140, 557-562.	7.8	51
34	Growth process monitoring and crystalline quality assessment of CuInS(Se)2 based solar cells by Raman spectroscopy. Thin Solid Films, 2003, 431-432, 122-125.	1.8	50
35	A cyclo olefin polymer microfluidic chip with integrated gold microelectrodes for aqueous and non-aqueous electrochemistry. Lab on A Chip, 2010, 10, 1254.	6.0	49
36	Raman scattering structural evaluation of CuInS2 thin films. Thin Solid Films, 2001, 387, 216-218.	1.8	45

#	Article	IF	CITATIONS
37	Localized and distributed mass detectors with high sensitivity based on thin-film bulk acoustic resonators. Applied Physics Letters, 2006, 89, 033507.	3.3	45
38	Parameter optimisation in SnO2 gas sensors for NO2 detection with low cross-sensitivity to CO: sol–gel preparation, film preparation, powder calcination, doping and grinding. Sensors and Actuators B: Chemical, 2000, 65, 166-168.	7.8	44
39	Gas sensors based on individual indium oxide nanowire. Sensors and Actuators B: Chemical, 2017, 238, 447-454.	7.8	44
40	Characterization of metal-oxide nanosensors fabricated with focused ion beam (FIB). Sensors and Actuators B: Chemical, 2006, 118, 198-203.	7.8	42
41	Harnessing self-heating in nanowires for energy efficient, fully autonomous and ultra-fast gas sensors. Sensors and Actuators B: Chemical, 2010, 144, 1-5.	7.8	42
42	Template synthesis and forming electrical contacts to single Au nanowires by focused ion beam techniques. Nanotechnology, 2006, 17, 1134-1139.	2.6	40
43	Effect of Ga incorporation in sequentially prepared CuInS2 thin film absorbers. Solar Energy Materials and Solar Cells, 2001, 67, 97-104.	6.2	39
44	Visible photoluminescence of SiO2 implanted with carbon and silicon. Nuclear Instruments & Methods in Physics Research B, 1996, 120, 101-105.	1.4	38
45	Studies on Surface Facets and Chemical Composition of Vapor Grown One-Dimensional Magnetite Nanostructures. Crystal Growth and Design, 2009, 9, 1077-1081.	3.0	36
46	Nondestructive assessment of the grain size distribution of SnO2 nanoparticles by low-frequency Raman spectroscopy. Applied Physics Letters, 1997, 71, 1957-1959.	3.3	34
47	Influence of the completion of oxidation on the long-term response of RGTO SnO2 gas sensors. Sensors and Actuators B: Chemical, 2000, 66, 40-42.	7.8	34
48	Spectroscopic characterization of phases formed by highâ€dose carbon ion implantation in silicon. Journal of Applied Physics, 1995, 77, 2978-2984.	2.5	33
49	Direct observation of the gas-surface interaction kinetics in nanowires through pulsed self-heating assisted conductometric measurements. Applied Physics Letters, 2009, 95, .	3.3	33
50	Pushing the Composition Limit of Anisotropic Ge _{1–<i>x</i>} Sn _{<i>x</i>} Nanostructures and Determination of Their Thermal Stability. Chemistry of Materials, 2017, 29, 9802-9813.	6.7	33
51	Combined in-depth scanning Auger microscopy and Raman scattering characterisation of CulnS2 polycrystalline films. Vacuum, 2001, 63, 315-321.	3.5	32
52	Localized growth and in situ integration of nanowires for device applications. Chemical Communications, 2012, 48, 4734.	4.1	32
53	An array of ordered pillars with retentive properties for pressure-driven liquid chromatography fabricated directly from an unmodified cyclo olefin polymer. Lab on A Chip, 2009, 9, 1511.	6.0	31
54	Site-selectively grown SnO2 NWs networks on micromembranes for efficient ammonia sensing in humid conditions. Sensors and Actuators B: Chemical, 2016, 232, 402-409.	7.8	31

#	Article	IF	CITATIONS
55	Site-Specific Growth and in Situ Integration of Different Nanowire Material Networks on a Single Chip: Toward a Nanowire-Based Electronic Nose for Gas Detection. ACS Sensors, 2018, 3, 727-734.	7.8	31
56	Analyses of the ammonia response of integrated gas sensors working in pulsed mode. Sensors and Actuators B: Chemical, 2006, 118, 318-322.	7.8	28
57	Effect of annealing at argon pressure up to 1.2 GPa on hydrogen-plasma-etched and hydrogen-implanted single-crystalline silicon. International Journal of Hydrogen Energy, 2001, 26, 483-488.	7.1	27
58	Facile integration of ordered nanowires in functional devices. Sensors and Actuators B: Chemical, 2015, 221, 104-112.	7.8	27
59	Ion-beam synthesis and structural characterization of ZnS nanocrystals in SiO2. Applied Physics Letters, 1998, 72, 3488-3490.	3.3	24
60	Low temperature humidity sensor based on Ge nanowires selectively grown on suspended microhotplates. Sensors and Actuators B: Chemical, 2017, 243, 669-677.	7.8	23
61	Formation of CoSi2 and TiSi2 on narrow poly-Si lines. Microelectronic Engineering, 1991, 14, 327-339.	2.4	22
62	Analysis of the Thermal Oxidation of Tin Droplets and Its Implications on Gas Sensor Stability. Journal of the Electrochemical Society, 1999, 146, 3527-3535.	2.9	22
63	Localized-mass detection based on thin-film bulk acoustic wave resonators (FBAR): Area and mass location aspects. Sensors and Actuators A: Physical, 2008, 142, 322-328.	4.1	22
64	Synthesis of SiC Microstructures in Si Technology by High Dose Carbon Implantation: Etch top Properties. Journal of the Electrochemical Society, 1997, 144, 2211-2215.	2.9	21
65	Real-time investigations of the influence of sodium on the properties of Cu-poor prepared CuInS2 thin films. Thin Solid Films, 2003, 431-432, 110-115.	1.8	20
66	In situ and ex situ characterisation of thermally induced crystallisation of CuInS2 thin films for solar cell. Thin Solid Films, 2005, 480-481, 362-366.	1.8	20
67	Mesoporous Silica: A Suitable Adsorbent for Amines. Nanoscale Research Letters, 2009, 4, 1303-8.	5.7	19
68	Selectively arranged single-wire based nanosensor array systems for gas monitoring. Nanoscale, 2018, 10, 9087-9096.	5.6	19
69	Dual-beam focused ion beam (FIB): A prototyping tool for micro and nanofabrication. Microelectronic Engineering, 2007, 84, 789-792.	2.4	18
70	Nano illumination microscopy: a technique based on scanning with an array of individually addressable nanoLEDs. Optics Express, 2020, 28, 19044.	3.4	18
71	SiC-based MIS gas sensor for high water vapor environments. Sensors and Actuators B: Chemical, 2012, 175, 60-66.	7.8	17
72	β-SiC on SiO2 formed by ion implantation and bonding for micromechanics applications. Sensors and Actuators A: Physical, 1999, 74, 169-173.	4.1	16

#	Article	IF	CITATIONS
73	Effect of uniform stress on silicon implanted with helium, hydrogen and oxygen. Computational Materials Science, 2001, 21, 515-525.	3.0	16
74	Growth of GaN layers on SiC/Si(111) substrate by molecular beam epitaxy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 93, 172-176.	3.5	16
75	Effect of the nanostructure and surface chemistry on the gas adsorption properties of macroscopic multiwalled carbon nanotube ropes. Carbon, 2007, 45, 83-88.	10.3	16
76	Experimental study of the depth influence on the band broadening effect in a cyclo-olefin polymer column containing an array of ordered pillars. Journal of Chromatography A, 2010, 1217, 5817-5821.	3.7	15
77	Formaldehyde sensing mechanism of SnO ₂ nanowires grown on-chip by sputtering techniques. RSC Advances, 2016, 6, 18558-18566.	3.6	15
78	Structural and optical characterization of Mn doped ZnS nanocrystals elaborated by ion implantation in SiO2. Nuclear Instruments & Methods in Physics Research B, 1999, 147, 373-377.	1.4	14
79	Nanostructured oxides on porous silicon microhotplates for NH3 sensing. Microelectronic Engineering, 2008, 85, 1116-1119.	2.4	14
80	Test microstructures for measurement of SiC thin film mechanical properties. Journal of Micromechanics and Microengineering, 1999, 9, 190-193.	2.6	13
81	Luminescence Properties of Oxygen-Containing Silicon Annealed at Enhanced Argon Pressure. Physica Status Solidi (B): Basic Research, 1999, 211, 233-238.	1.5	13
82	Effect of external stress on creation of buried SiO2 layer in silicon implanted with oxygen. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 73, 134-138.	3.5	13
83	An experimental method to estimate the temperature of individual nanowires. International Journal of Nanotechnology, 2009, 6, 860.	0.2	12
84	Point defect reactions in silicon studied <i>in situ</i> by high flux electron irradiation in high voltage transmission electron microscope. Materials Science and Technology, 1995, 11, 1194-1202.	1.6	11
85	Sulfurization of Cu/In Precursors for CuInS[sub 2]-Based Solar Cells. Journal of the Electrochemical Society, 2003, 150, G400.	2.9	11
86	On the artificial creation of the EL2 center by means of boron implantation in gallium arsenide. Journal of Applied Physics, 1991, 70, 4202-4210.	2.5	10
87	Characterisation and stabilisation of Pt/TaSix/SiO2/SiC gas sensor. Sensors and Actuators B: Chemical, 2005, 109, 119-127.	7.8	10
88	Nano- and microsized metal oxide thin film gas sensors. Microsystem Technologies, 2008, 14, 645-651.	2.0	10
89	Dependence of photoluminescence of silicon on conditions of pressure-annealing. Journal of Alloys and Compounds, 1999, 286, 258-264.	5.5	9
90	Focused-ion-beam-assisted tuning of thin-film bulk acoustic wave resonators (FBARs). Journal of Micromechanics and Microengineering, 2007, 17, 2380-2389.	2.6	9

#	Article	IF	CITATIONS
91	Experimental study of the retention properties of a cyclo olefin polymer pillar array column in reversedâ€phase mode. Journal of Separation Science, 2010, 33, 3313-3318.	2.5	9
92	Microstructure of Czochralski silicon annealed at enhanced stress conditions. Journal of Alloys and Compounds, 2001, 328, 90-96.	5.5	8
93	Microstructural characterisation of CuInS2 polycrystalline films sulfurised by rapid thermal processing. Thin Solid Films, 2001, 387, 219-221.	1.8	8
94	Hybrid liquid crystalline zinc phthalocyanine@Cu2O nanowires for NO2 sensor application. Sensors and Actuators B: Chemical, 2021, 345, 130431.	7.8	8
95	On the influence of interfaces and localised stress fields on irradiation-induced point-defect distributions in silicon. Applied Physics A: Solids and Surfaces, 1993, 57, 521-527.	1.4	7
96	Structural analysis of buried AlN thin films formed by nitrogen implantation into microelectronics grade aluminium. Nuclear Instruments & Methods in Physics Research B, 1994, 84, 214-217.	1.4	7
97	Effect of stress and composition on the Raman spectra of etchâ€stop SiGeB layers. Journal of Applied Physics, 1996, 80, 5736-5741.	2.5	7
98	Electron beam lithography for contacting single nanowires on non-flat suspended substrates. Sensors and Actuators B: Chemical, 2019, 286, 616-623.	7.8	7
99	Strain in hydrogen and oxygen implanted silicon and SOI structures annealed at high pressure. Journal of Alloys and Compounds, 2001, 328, 181-186.	5.5	6
100	Gas Nanosensors Based on Individual Indium Oxide Nanostructures. Procedia Engineering, 2015, 120, 795-798.	1.2	6
101	Optical particle detection in liquid suspensions with a hybrid integrated microsystem. Sensors and Actuators A: Physical, 2016, 247, 629-640.	4.1	5
102	Room Temperature Humidity Sensor Based on Single β-Ga2O3 Nanowires. Proceedings (mdpi), 2019, 2, .	0.2	5
103	In-situ HVEM study of the influence of localised strain, interfaces, and extrinsic point defects on {113}-defect generation in silicon. Physica Status Solidi A, 1993, 138, 417-424.	1.7	4
104	Anisotropic etch-stop properties of nitrogen-implanted silicon. Sensors and Actuators A: Physical, 1994, 45, 219-225.	4.1	4
105	Etch‣top Behavior of Buried Layers Formed by Substoichiometric Nitrogen Ion Implantation into Silicon. Journal of the Electrochemical Society, 1996, 143, 1026-1033.	2.9	4
106	Electrical Contacts and Gas Sensing Analysis of Individual Metal Oxide Nanowires and 3-D Nanocrystal Networks. IEEJ Transactions on Sensors and Micromachines, 2006, 126, 537-547.	0.1	4
107	Locally Grown SnO 2 NWs as Low Power Ammonia Sensor. Procedia Engineering, 2015, 120, 215-219.	1.2	4
108	Individual Gallium Oxide Nanowires for Humidity Sensing at Low Temperature. Proceedings (mdpi), 2017, 1, .	0.2	4

#	Article	IF	CITATIONS
109	Pursuing the Diffraction Limit with Nano-LED Scanning Transmission Optical Microscopy. Sensors, 2021, 21, 3305.	3.8	4
110	Structural characterisation of nitrogen ion implantation into silicon for sensor technology. Nuclear Instruments & Methods in Physics Research B, 1993, 80-81, 702-705.	1.4	3
111	Optical characterisation of SIMOX structures formed by successive implantation and annealing. Nuclear Instruments & Methods in Physics Research B, 1994, 84, 275-280.	1.4	3
112	TEM characterisation of high pressure–high-temperature-treated Czochralski silicon samples. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 73, 250-254.	3.5	3
113	Porous-like silicon prepared from Si:H annealed at high argon pressure. Physica Status Solidi A, 2003, 197, 236-240.	1.7	3
114	Ultimate response dynamics achieved with gas sensors based on self-heated nanowires. Procedia Chemistry, 2009, 1, 1427-1430.	0.7	3
115	Electrical Impedance Spectroscopy Microflow Cytometer for Cell Viability Tests. , 2018, , .		3
116	Fabrication, Characterization and Performance of Low Power Gas Sensors Based on (GaxIn1-x)2O3ÂNanowires. Sensors, 2021, 21, 3342.	3.8	3
117	Dopant Dependent Extended Defect Nucleation and Growth Kinetics in Silicon During 1 Mev Electron Irradiation. Materials Research Society Symposia Proceedings, 1992, 262, 1091.	0.1	2
118	Ion beam synthesis of aluminium nitride: characterisation of thin AIN layers formed in microelectronics aluminium. Materials Science and Technology, 1995, 11, 1187-1190.	1.6	2
119	Ultra low energy SIMS, XTEM and X-ray diffraction methods for the characterization of a MBE grown short period (Si Ge)16 superlattices. Thin Solid Films, 2000, 367, 176-179.	1.8	2
120	Ion beam synthesis of n-type doped SiC layers. Applied Surface Science, 2001, 184, 367-371.	6.1	2
121	Luminescence and Morphological Properties of GaN Layers Grown on SiC/Si(111) Substrates. Physica Status Solidi A, 2002, 192, 401-406.	1.7	2
122	Transmission electron microscopy and image simulation study of CuAu domains in CuInS2 epitaxial layers. Thin Solid Films, 2003, 431-432, 226-230.	1.8	2
123	Microcoils for biosensors fabricated by focused ion beam (FIB). , 0, , .		2
124	P2K-2 Sensitivity Considerations in Localized Mass Detection Based on Thin-Film Bulk Acoustic Wave Resonators. , 2006, , .		2
125	Micro and nanotechnologies for the development of an integrated chromatographic system. , 2007, , .		2
126	Room temperature conductometric gas sensors based on metal oxide nanowires and nanocrystals. , 2009, , .		2

#	Article	IF	CITATIONS
127	Individual nanowire chemical sensor system self-powered with energy scavenging technologies. , 2009, , .		2
128	Low-cost Fabrication of Zero-power Metal Oxide Nanowire Gas Sensors: Trends and Challenges. Procedia Engineering, 2015, 120, 488-491.	1.2	2
129	Nitrogen Dioxide Selective Sensor for Humid Environments Based on Octahedral Indium Oxide. Frontiers in Sensors, 2021, 2, .	3.3	2
130	Structural analysis of buried conducting CoSi2 layers formed in Si by high-dose Co ion implantation. Journal of Crystal Growth, 1998, 187, 435-443.	1.5	1
131	<title>Effect of stress on defect transformation in hydrogen-implanted silicon and SOI structures</title> . , 2001, 4412, 120.		1
132	<title>Raman scattering and microstructural analysis of polycrystalline CuInS2 films for solar cell devices</title> . , 2003, 5024, 117.		1
133	Template synthesis and forming electrical contacts to single Au nanowires by focused ion beam techniques. Nanotechnology, 2007, 18, 459001.	2.6	1
134	Electrodeposited CuIn(S, Se)2 films for low cost high efficiency solar cell applications: microstructural analysis. , 2007, , .		1
135	Photoexcited Individual Nanowires: Key Elements in Room Temperature Detection of Oxidizing Gases. , 2009, , .		1
136	Low resistivity Pt interconnects developed by electron beam assisted deposition using novel gas injector system. Journal of Physics: Conference Series, 2012, 371, 012038.	0.4	1
137	Colorimetric sensor for bad odor detection using automated color correction. , 2017, , .		1
138	Gas Sensors Based on Individual (Ga, In)2O3 Nanowires. Proceedings (mdpi), 2017, 1, 321.	0.2	1
139	Gas Sensing Characterization of Single-Nanowire Sensor Array Systems Based on Non-Functionalized and Pt-Functionalized Tungsten Oxide. Proceedings (mdpi), 2017, 1, .	0.2	1
140	Functional materials for environmental sensors and energy systems. Beilstein Journal of Nanotechnology, 2017, 8, 2015-2016.	2.8	1
141	Localized and In-Situ Integration of Different Nanowire Materials for Electronic Nose Applications. Proceedings (mdpi), 2018, 2, 957.	0.2	1
142	A Novel Approach for a Chip-Sized Scanning Optical Microscope. Micromachines, 2021, 12, 527.	2.9	1
143	Nanosensor array systems based on single functional wires selectively integrated and their sensing properties to C2H6O and NO2. , 2017, , .		1
144	Nanosensors: Controlling Transduction Mechanisms at the Nanoscale Using Metal Oxides and		1

Semiconductors. , 2009, , 1-51.

#	Article	IF	CITATIONS
145	A tem specimen preparation technique of prespecified areas of semiconductor devices using conventional equipment. Micron and Microscopica Acta, 1990, 21, 223-224.	0.2	0
146	TEM characterisation of lopos structures for submicron CMOS technology. Micron and Microscopica Acta, 1990, 21, 291-292.	0.2	0
147	In-Situ HVEM study of dopant dependent {113}-defect generation in silicon during 1-MeV electron irradiation. Microscopy Research and Technique, 1993, 25, 181-182.	2.2	0
148	Optical characterization of carbon ion implantation into Si and SiGe alloys. , 1998, 3359, 324.		0
149	Photoluminescence of Porous Silicon Prepared from Pressure Treated Cz-Si. Physica Status Solidi A, 2000, 182, 401-406.	1.7	0
150	Title is missing!. Journal of Materials Science: Materials in Electronics, 2001, 12, 211-214.	2.2	0
151	Electrical characterisation of nanowires and nanoparticles contacted using a FIB. , O, , .		0
152	Electrical response of MOSiC gas sensors to CO, NO/sub 2/ and C/sub 3/H/sub 8/. , 0, , .		0
153	Fabrication of bottom-up gas sensors based on individual SnO ₂ nanowires and suspended microhotplates. , 2007, , .		0
154	Nano and micro stripe based metal oxide thin film gas sensor. , 2007, , .		0
155	Bottom-up Fabrication of Individual SnO2 Nanowires-based Gas Sensors on Suspended Micromembranes. Materials Research Society Symposia Proceedings, 2007, 1052, 1.	0.1	0
156	Gas Sensing Devices Based on 1D Metal-Oxide Nanostructures: Fabrication, Testing and Device Integration. ECS Transactions, 2008, 13, 57-64.	0.5	0
157	UV photosensors based on individual semiconductor nanowires. , 2009, , .		0
158	SiC-Based MIS Gas Sensor for High Water Vapor Environments. Procedia Engineering, 2011, 25, 1321-1324.	1.2	0
159	Methods and Techniques for the Fabrication of Gas Sensing Devices from Nanowires. Procedia Engineering, 2011, 25, 1409-1412.	1.2	0
160	Optical Particle Detection in Liquid Suspensions with a Hybrid Integrated Microsystem. Procedia Engineering, 2015, 120, 1071-1074.	1.2	0
161	Hybrid integration of VCSELs and microlenses for a particle detection microoptical system. , 2015, , .		0
162	Site-selectively Grown p-type Ge NWs as a Gas Sensor. Procedia Engineering, 2016, 168, 1056-1060.	1.2	0

#	Article	IF	CITATIONS
163	Laser Interferometry for Broad Area SPR-Grating Couplers in Chemical Applications. Proceedings (mdpi), 2017, 1, .	0.2	0
164	A Compact Robust OWLS System for Biosensing of Multiple Samples. Proceedings (mdpi), 2018, 2, .	0.2	0
165	Comparative Studies of Chemoresistive Gas Sensors Based on Multiple Randomly Connected Wires and Arrays of Single-Wires. Proceedings (mdpi), 2018, 2, .	0.2	0
166	Different Nanowire Materials Localized Growth and In-Situ Integration for Electronic Nose Applications. , 2018, , .		0
167	Inorganic nanomaterials. , 2020, , 17-35.		0
168	Estudio de la reacción de sulfurización de precursores Cu/In para la formación de capas delgadas policristalinas de CuInS ₂ para células solares. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2004, 43, 348-351.	1.9	0
169	Electrical Impedance Spectroscopy Microflow Cytometer for Cell Viability Tests. , 2018, , .		0