Adam P Arkin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4788895/publications.pdf

Version: 2024-02-01

367 papers 60,376 citations

91 h-index 227 g-index

441 all docs

441 docs citations

times ranked

441

59511 citing authors

#	Article	IF	CITATIONS
1	Sustained Ability of a Natural Microbial Community to Remove Nitrate from Groundwater. Ground Water, 2022, 60, 99-111.	1.3	6
2	Systems-informed genome mining for electroautotrophic microbial production. Bioelectrochemistry, 2022, 145, 108054.	4.6	7
3	Global Analysis of Biomineralization Genes in <i>Magnetospirillum magneticum</i> AMB-1. MSystems, 2022, 7, e0103721.	3.8	2
4	Genomic Features and Pervasive Negative Selection in <i>Rhodanobacter</i> Strains Isolated from Nitrate and Heavy Metal Contaminated Aquifer. Microbiology Spectrum, 2022, 10, e0259121.	3.0	8
5	Genotype to ecotype in niche environments: adaptation of <i>Arthrobacter</i> to carbon availability and environmental conditions. ISME Communications, 2022, 2, .	4.2	9
6	A Phage Foundry Framework to Systematically Develop Viral Countermeasures to Combat Antibiotic-Resistant Bacterial Pathogens. IScience, 2022, 25, 104121.	4.1	12
7	Filling gaps in bacterial catabolic pathways with computation and high-throughput genetics. PLoS Genetics, 2022, 18, e1010156.	3.5	15
8	Complete Genome Sequence of Bacillus cereus Strain CPT56D-587-MTF, Isolated from a Nitrate- and Metal-Contaminated Subsurface Environment. Microbiology Resource Announcements, 2022, 11, e0014522.	0.6	1
9	Photovoltaics-Driven Power Production Can Support Human Exploration on Mars. Frontiers in Astronomy and Space Sciences, 2022, 9, .	2.8	3
10	A Defined Medium for Cultivation and Exometabolite Profiling of Soil Bacteria. Frontiers in Microbiology, 2022, 13 , .	3.5	11
11	Development of a Markerless Deletion Mutagenesis System in Nitrate-Reducing Bacterium Rhodanobacter denitrificans. Applied and Environmental Microbiology, 2022, 88, .	3.1	3
12	Space bioprocess engineering on the horizon. , 2022, 1, .		11
13	A genomic catalog of Earth's microbiomes. Nature Biotechnology, 2021, 39, 499-509.	17.5	457
14	The ModelSEED Biochemistry Database for the integration of metabolic annotations and the reconstruction, comparison and analysis of metabolic models for plants, fungi and microbes. Nucleic Acids Research, 2021, 49, D575-D588.	14.5	119
15	Four families of folate-independent methionine synthases. PLoS Genetics, 2021, 17, e1009342.	3.5	8
16	Deletion Mutants, Archived Transposon Library, and Tagged Protein Constructs of the Model Sulfate-Reducing Bacterium Desulfovibrio vulgaris Hildenborough. Microbiology Resource Announcements, 2021, 10, .	0.6	6
17	Molecular pharming to support human life on the moon, mars, and beyond. Critical Reviews in Biotechnology, 2021, 41, 849-864.	9.0	25
18	Systematic discovery of pseudomonad genetic factors involved in sensitivity to tailocins. ISME Journal, 2021, 15, 2289-2305.	9.8	27

#	Article	IF	Citations
19	Mechanism Across Scales: A Holistic Modeling Framework Integrating Laboratory and Field Studies for Microbial Ecology. Frontiers in Microbiology, 2021, 12, 642422.	3.5	12
20	Functional genetics of human gut commensal Bacteroides thetaiotaomicron reveals metabolic requirements for growth across environments. Cell Reports, 2021, 34, 108789.	6.4	82
21	A method for achieving complete microbial genomes and improving bins from metagenomics data. PLoS Computational Biology, 2021, 17, e1008972.	3.2	22
22	Ecogenomics of Groundwater Phages Suggests Niche Differentiation Linked to Specific Environmental Tolerance. MSystems, 2021, 6, e0053721.	3.8	8
23	Production of PHB From CO2-Derived Acetate With Minimal Processing Assessed for Space Biomanufacturing. Frontiers in Microbiology, 2021, 12, 700010.	3.5	17
24	Towards a Biomanufactory on Mars. Frontiers in Astronomy and Space Sciences, 2021, 8, .	2.8	30
25	Deciphering Microbial Metal Toxicity Responses via Random Bar Code Transposon Site Sequencing and Activity-Based Metabolomics. Applied and Environmental Microbiology, 2021, 87, e0103721.	3.1	3
26	A Simple, Cost-Effective, and Automation-Friendly Direct PCR Approach for Bacterial Community Analysis. MSystems, 2021, 6, e0022421.	3.8	6
27	Evaluating the Cost of Pharmaceutical Purification for a Long-Duration Space Exploration Medical Foundry. Frontiers in Microbiology, 2021, 12, 700863.	3.5	9
28	Bioinformatic Teaching Resources – For Educators, by Educators – Using KBase, a Free, User-Friendly, Open Source Platform. Frontiers in Education, 2021, 6, .	2.1	4
29	A KBase case study on genome-wide transcriptomics and plant primary metabolism in response to drought stress in Sorghum Current Plant Biology, 2021, 28, 100229.	4.7	4
30	The genetic basis of phage susceptibility, cross-resistance and host-range in Salmonella. Microbiology (United Kingdom), 2021, 167, .	1.8	20
31	iVirus 2.0: Cyberinfrastructure-supported tools and data to power DNA virus ecology. ISME Communications, 2021, 1 , .	4.2	13
32	Biofilm Interaction Mapping and Analysis (BIMA) of Interspecific Interactions in Pseudomonas Co-culture Biofilms. Frontiers in Microbiology, 2021, 12, 757856.	3.5	1
33	High-throughput mapping of the phage resistance landscape in E. coli. PLoS Biology, 2020, 18, e3000877.	5.6	91
34	Redefining fundamental concepts of transcription initiation in bacteria. Nature Reviews Genetics, 2020, 21, 699-714.	16.3	100
35	Characterization of a Metal-Resistant Bacillus Strain With a High Molybdate Affinity ModA From Contaminated Sediments at the Oak Ridge Reservation. Frontiers in Microbiology, 2020, 11, 587127.	3.5	11
36	GapMind: Automated Annotation of Amino Acid Biosynthesis. MSystems, 2020, 5, .	3.8	40

#	Article	IF	Citations
37	A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nature Communications, 2020, 11 , 4717.	12.8	417
38	Effects of Genetic and Physiological Divergence on the Evolution of a Sulfate-Reducing Bacterium under Conditions of Elevated Temperature. MBio, 2020, 11 , .	4.1	5
39	Draft Genome Sequence of <i>Bacillus</i> sp. Strain EB106-08-02-XG196, Isolated from High-Nitrate-Contaminated Sediment. Microbiology Resource Announcements, 2020, 9, .	0.6	0
40	Diverse Bacterial Genes Modulate Plant Root Association by Beneficial Bacteria. MBio, 2020, 11, .	4.1	15
41	Selective carbon sources influence the end products of microbial nitrate respiration. ISME Journal, 2020, 14, 2034-2045.	9.8	61
42	Small and mighty: adaptation of superphylum Patescibacteria to groundwater environment drives their genome simplicity. Microbiome, 2020, 8, 51.	11.1	205
43	Characterization of subsurface media from locations up- and down-gradient of a uranium-contaminated aquifer. Chemosphere, 2020, 255, 126951.	8.2	18
44	In-field bioreactors demonstrate dynamic shifts in microbial communities in response to geochemical perturbations. PLoS ONE, 2020, 15, e0232437.	2.5	5
45	The Role of Synthetic Biology in Atmospheric Greenhouse Gas Reduction: Prospects and Challenges. Biodesign Research, 2020, 2020, .	1.9	24
46	High-throughput mapping of the phage resistance landscape in E. coli., 2020, 18, e3000877.		0
47	High-throughput mapping of the phage resistance landscape in E. coli. , 2020, 18, e3000877.		0
48	High-throughput mapping of the phage resistance landscape in E. coli., 2020, 18, e3000877.		0
49	High-throughput mapping of the phage resistance landscape in E. coli., 2020, 18, e3000877.		0
50	High-throughput mapping of the phage resistance landscape in E. coli., 2020, 18, e3000877.		0
51	High-throughput mapping of the phage resistance landscape in E. coli., 2020, 18, e3000877.		0
52	Improved Method for Estimating Reaction Rates During Pushâ€Pull Tests. Ground Water, 2019, 57, 292-302.	1.3	8
53	High spatiotemporal variability of bacterial diversity over short time scales with unique hydrochemical associations within a shallow aquifer. Water Research, 2019, 164, 114917.	11.3	23
54	Nitrate-Utilizing Microorganisms Resistant to Multiple Metals from the Heavily Contaminated Oak Ridge Reservation. Applied and Environmental Microbiology, 2019, 85, .	3.1	13

#	Article	IF	CITATIONS
55	Transposon insertional mutagenesis in <i>Saccharomyces uvarum</i> reveals <i>trans</i> -acting effects influencing species-dependent essential genes. Genome Research, 2019, 29, 396-406.	5.5	24
56	Dual-barcoded shotgun expression library sequencing for high-throughput characterization of functional traits in bacteria. Nature Communications, 2019, 10, 308.	12.8	33
57	Principles of synthetic biology: a MOOC for an emerging field. Synthetic Biology, 2019, 4, ysz010.	2.2	10
58	Massively Parallel Fitness Profiling Reveals Multiple Novel Enzymes in <i>Pseudomonas putida</i> Lysine Metabolism. MBio, 2019, 10, .	4.1	60
59	Iterative screening methodology enables isolation of strains with improved properties for a FACS-based screen and increased L-DOPA production. Scientific Reports, 2019, 9, 5815.	3.3	25
60	Multiplexed CRISPR-Cas9-Based Genome Editing of <i>Rhodosporidium toruloides</i> . MSphere, 2019, 4,	2.9	47
61	A versatile platform strain for high-fidelity multiplex genome editing. Nucleic Acids Research, 2019, 47, 3244-3256.	14.5	16
62	Curated BLAST for Genomes. MSystems, 2019, 4, .	3.8	13
63	Oxidative Pathways of Deoxyribose and Deoxyribonate Catabolism. MSystems, 2019, 4, .	3.8	34
64	Genomewide and Enzymatic Analysis Reveals Efficient <scp>d</scp> -Galacturonic Acid Metabolism in the Basidiomycete Yeast Rhodosporidium toruloides. MSystems, 2019, 4, .	3.8	20
65	Older Blood Is Associated With Increased Mortality and Adverse Events in Massively Transfused Trauma Patients: Secondary Analysis of the PROPPR Trial. Annals of Emergency Medicine, 2019, 73, 650-661.	0.6	38
66	CRISPR-Cas9 Circular Permutants as Programmable Scaffolds for Genome Modification. Cell, 2019, 176, 254-267.e16.	28.9	73
67	Designing Spatially Distributed Gene Regulatory Networks To Elicit Contrasting Patterns. ACS Synthetic Biology, 2019, 8, 119-126.	3.8	6
68	The selective pressures on the microbial community in a metal-contaminated aquifer. ISME Journal, 2019, 13, 937-949.	9.8	56
69	Iron―and aluminium―nduced depletion of molybdenum in acidic environments impedes the nitrogen cycle. Environmental Microbiology, 2019, 21, 152-163.	3.8	22
70	Structural basis for AcrVA4 inhibition of specific CRISPR-Cas12a. ELife, 2019, 8, .	6.0	41
71	Microbial Functional Gene Diversity Predicts Groundwater Contamination and Ecosystem Functioning. MBio, 2018, 9, .	4.1	57
72	Magic Pools: Parallel Assessment of Transposon Delivery Vectors in Bacteria. MSystems, 2018, 3, .	3.8	31

#	Article	IF	CITATIONS
73	Engineering Kluyveromyces marxianus as a Robust Synthetic Biology Platform Host. MBio, 2018, 9, .	4.1	58
74	Genetic dissection of interspecific differences in yeast thermotolerance. Nature Genetics, 2018, 50, 1501-1504.	21.4	43
75	Evaluation of 244,000 synthetic sequences reveals design principles to optimize translation in Escherichia coli. Nature Biotechnology, 2018, 36, 1005-1015.	17.5	182
76	Mutant phenotypes for thousands of bacterial genes of unknown function. Nature, 2018, 557, 503-509.	27.8	433
77	Functional genomics of lipid metabolism in the oleaginous yeast Rhodosporidium toruloides. ELife, 2018, 7, .	6.0	98
78	Deciphering microbial interactions in synthetic human gut microbiome communities. Molecular Systems Biology, 2018, 14, e8157.	7.2	361
79	KBase: The United States Department of Energy Systems Biology Knowledgebase. Nature Biotechnology, 2018, 36, 566-569.	17.5	955
80	Use of in-field bioreactors demonstrate groundwater filtration influences planktonic bacterial community assembly, but not biofilm composition. PLoS ONE, 2018, 13, e0194663.	2.5	9
81	Filling gaps in bacterial amino acid biosynthesis pathways with high-throughput genetics. PLoS Genetics, 2018, 14, e1007147.	3.5	90
82	Metabolic engineering of a haploid strain derived from a triploid industrial yeast for producing cellulosic ethanol. Metabolic Engineering, 2017, 40, 176-185.	7.0	27
83	A Highly Expressed High-Molecular-Weight S-Layer Complex of Pelosinus sp. Strain UFO1 Binds Uranium. Applied and Environmental Microbiology, 2017, 83, .	3.1	17
84	Temporal Dynamics of In-Field Bioreactor Populations Reflect the Groundwater System and Respond Predictably to Perturbation. Environmental Science & Eamp; Technology, 2017, 51, 2879-2889.	10.0	15
85	Programming mRNA decay to modulate synthetic circuit resource allocation. Nature Communications, 2017, 8, 15128.	12.8	50
86	Dynamic Succession of Groundwater Sulfate-Reducing Communities during Prolonged Reduction of Uranium in a Contaminated Aquifer. Environmental Science & Environmental Science & 2017, 51, 3609-3620.	10.0	22
87	Complete genome sequence of Pseudomonas stutzeri strain RCH2 isolated from a Hexavalent Chromium [Cr(VI)] contaminated site. Standards in Genomic Sciences, 2017, 12, 23.	1.5	12
88	Targeted clinical control of trauma patient coagulation through a thrombin dynamics model. Science Translational Medicine, 2017, 9, .	12.4	23
89	Quantitative Trait Loci (QTL)-Guided Metabolic Engineering of a Complex Trait. ACS Synthetic Biology, 2017, 6, 566-581.	3.8	26
90	Unintended Laboratory-Driven Evolution Reveals Genetic Requirements for Biofilm Formation by <i>Desulfovibrio vulgaris</i>	4.1	18

#	Article	IF	Citations
91	A metabolic pathway for catabolizing levulinic acid in bacteria. Nature Microbiology, 2017, 2, 1624-1634.	13.3	86
92	PaperBLAST: Text Mining Papers for Information about Homologs. MSystems, 2017, 2, .	3.8	107
93	Environmental Selection, Dispersal, and Organism Interactions Shape Community Assembly in High-Throughput Enrichment Culturing. Applied and Environmental Microbiology, 2017, 83, .	3.1	12
94	Key Metabolites and Mechanistic Changes for Salt Tolerance in an Experimentally Evolved Sulfate-Reducing Bacterium, <i>Desulfovibrio vulgaris</i>). MBio, 2017, 8, .	4.1	13
95	The JBEI quantitative metabolic modeling library (jQMM): a python library for modeling microbial metabolism. BMC Bioinformatics, 2017, 18, 205.	2.6	19
96	Draft Genome Sequences of Two Janthinobacterium lividum Strains, Isolated from Pristine Groundwater Collected from the Oak Ridge Field Research Center. Genome Announcements, 2017, 5, .	0.8	12
97	Mechanisms of Chromium and Uranium Toxicity in Pseudomonas stutzeri RCH2 Grown under Anaerobic Nitrate-Reducing Conditions. Frontiers in Microbiology, 2017, 8, 1529.	3.5	45
98	Rhodosporidium toruloides: a new platform organism for conversion of lignocellulose into terpene biofuels and bioproducts. Biotechnology for Biofuels, 2017, 10, 241.	6.2	150
99	Genetic interaction mapping with microfluidic-based single cell sequencing. PLoS ONE, 2017, 12, e0171302.	2.5	9
100	Validating regulatory predictions from diverse bacteria with mutant fitness data. PLoS ONE, 2017, 12, e0178258.	2.5	9
101	An Interventional Soylent Diet Increases the Bacteroidetes to Firmicutes Ratio in Human Gut Microbiome Communities. American Journal of Gastroenterology, 2017, 112, S67-S69.	0.4	0
102	A Theoretical Lower Bound for Selection on the Expression Levels of Proteins. Genome Biology and Evolution, 2016, 8, 1917-1928.	2.5	9
103	A Comparison of the Costs and Benefits of Bacterial Gene Expression. PLoS ONE, 2016, 11, e0164314.	2.5	26
104	System-Wide Adaptations of Desulfovibrio alaskensis G20 to Phosphate-Limited Conditions. PLoS ONE, 2016, 11, e0168719.	2.5	15
105	Engineering <i>Rhodosporidium toruloides</i> for increased lipid production. Biotechnology and Bioengineering, 2016, 113, 1056-1066.	3.3	143
106	Lateral Gene Transfer in a Heavy Metal-Contaminated-Groundwater Microbial Community. MBio, 2016, 7, e02234-15.	4.1	105
107	Rapid and Efficient One-Step Metabolic Pathway Integration in <i>E.Âcoli</i> . ACS Synthetic Biology, 2016, 5, 561-568.	3.8	143
108	Rapid and efficient galactose fermentation by engineered Saccharomyces cerevisiae. Journal of Biotechnology, 2016, 229, 13-21.	3.8	24

#	Article	IF	CITATIONS
109	Gene Amplification on Demand Accelerates Cellobiose Utilization in Engineered Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2016, 82, 3631-3639.	3.1	24
110	Metabolic engineering of the oleaginous yeast Rhodosporidium toruloides IFO0880 for lipid overproduction during high-density fermentation. Applied Microbiology and Biotechnology, 2016, 100, 9393-9405.	3 . 6	101
111	Novel Metal Cation Resistance Systems from Mutant Fitness Analysis of Denitrifying Pseudomonas stutzeri. Applied and Environmental Microbiology, 2016, 82, 6046-6056.	3.1	21
112	The Genome Project-Write. Science, 2016, 353, 126-127.	12.6	194
113	Exometabolomics Assisted Design and Validation of Synthetic Obligate Mutualism. ACS Synthetic Biology, 2016, 5, 569-576.	3.8	23
114	Towards Engineering Biological Systems in a Broader Context. Journal of Molecular Biology, 2016, 428, 928-944.	4.2	30
115	Determining Roles of Accessory Genes in Denitrification by Mutant Fitness Analyses. Applied and Environmental Microbiology, 2016, 82, 51-61.	3.1	31
116	Grand challenges in space synthetic biology. Journal of the Royal Society Interface, 2015, 12, 20150803.	3 . 4	55
117	Orthogonal control of expression mean and variance by epigenetic features at different genomic loci. Molecular Systems Biology, 2015, 11, 806.	7.2	95
118	Complete Genome Sequences of Four Escherichia coli ST95 Isolates from Bloodstream Infections. Genome Announcements, $2015, 3, .$	0.8	18
119	Complete Genome Sequence of Pelosinus fermentans JBW45, a Member of a Remarkably Competitive Group of <i>Negativicutes</i> in the <i>Firmicutes</i> Phylum. Genome Announcements, 2015, 3, .	0.8	6
120	Comparative metagenomics reveals impact of contaminants on groundwater microbiomes. Frontiers in Microbiology, $2015, 6, 1205$.	3. 5	77
121	Natural Bacterial Communities Serve as Quantitative Geochemical Biosensors. MBio, 2015, 6, e00326-15.	4.1	173
122	Rapid Quantification of Mutant Fitness in Diverse Bacteria by Sequencing Randomly Bar-Coded Transposons. MBio, 2015, 6, e00306-15.	4.1	380
123	Molybdenum Availability Is Key to Nitrate Removal in Contaminated Groundwater Environments. Applied and Environmental Microbiology, 2015, 81, 4976-4983.	3.1	49
124	High-Quality Draft Genome Sequence of Desulfovibrio carbinoliphilus FW-101-2B, an Organic Acid-Oxidizing Sulfate-Reducing Bacterium Isolated from Uranium(VI)-Contaminated Groundwater. Genome Announcements, 2015, 3, .	0.8	3
125	Weakly Deleterious Mutations and Low Rates of Recombination Limit the Impact of Natural Selection on Bacterial Genomes. MBio, 2015, 6, e01302-15.	4.1	22
126	Avoidance of Truncated Proteins from Unintended Ribosome Binding Sites within Heterologous Protein Coding Sequences. ACS Synthetic Biology, 2015, 4, 249-257.	3.8	30

#	Article	IF	Citations
127	Independence of Nitrate and Nitrite Inhibition of <i>Desulfovibrio vulgaris</i> Hildenborough and Use of Nitrite as a Substrate for Growth. Environmental Science & Desulfovibrio vulgaris	10.0	28
128	Monofluorophosphate Is a Selective Inhibitor of Respiratory Sulfate-Reducing Microorganisms. Environmental Science & Environme	10.0	69
129	Dynamic Succession of Groundwater Functional Microbial Communities in Response to Emulsified Vegetable Oil Amendment during Sustained <i>In Situ</i> U(VI) Reduction. Applied and Environmental Microbiology, 2015, 81, 4164-4172.	3.1	24
130	A Slow-Release Substrate Stimulates Groundwater Microbial Communities for Long-Term in Situ Cr(VI) Reduction. Environmental Science & Environmental Sc	10.0	19
131	Rapid selective sweep of pre-existing polymorphisms and slow fixation of new mutations in experimental evolution of <i>Desulfovibrio vulgaris</i> ISME Journal, 2015, 9, 2360-2372.	9.8	24
132	The essential gene set of a photosynthetic organism. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6634-43.	7.1	166
133	Genome-Wide Tuning of Protein Expression Levels to Rapidly Engineer Microbial Traits. ACS Synthetic Biology, 2015, 4, 1244-1253.	3.8	22
134	Complete Genome Sequence of Cupriavidus basilensis 4G11, Isolated from the Oak Ridge Field Research Center Site. Genome Announcements, 2015, 3, .	0.8	23
135	Novel Mechanism for Scavenging of Hypochlorite Involving a Periplasmic Methionine-Rich Peptide and Methionine Sulfoxide Reductase. MBio, 2015, 6, e00233-15.	4.1	50
136	Towards synthetic biological approaches to resource utilization on space missions. Journal of the Royal Society Interface, 2015, 12, 20140715.	3.4	100
137	Rex (Encoded by DVU_0916) in Desulfovibrio vulgaris Hildenborough Is a Repressor of Sulfate Adenylyl Transferase and Is Regulated by NADH. Journal of Bacteriology, 2015, 197, 29-39.	2.2	37
138	Mechanisms of direct inhibition of the respiratory sulfate-reduction pathway by (per)chlorate and nitrate. ISME Journal, 2015, 9, 1295-1305.	9.8	87
139	A Method to Constrain Genome-Scale Models with 13C Labeling Data. PLoS Computational Biology, 2015, 11, e1004363.	3.2	53
140	Functional Genomics with a Comprehensive Library of Transposon Mutants for the Sulfate-Reducing Bacterium Desulfovibrio alaskensis G20. MBio, 2014, 5, e01041-14.	4.1	56
141	Transcript level and sequence determinants of protein abundance and noise in Escherichia coli. Nucleic Acids Research, 2014, 42, 4791-4799.	14.5	79
142	D-Tailor: automated analysis and design of DNA sequences. Bioinformatics, 2014, 30, 1087-1094.	4.1	31
143	The genetic basis of energy conservation in the sulfate-reducing bacterium Desulfovibrio alaskensis G20. Frontiers in Microbiology, 2014, 5, 577.	3. 5	61
144	Pattern formation with a compartmental lateral inhibition system. , 2014, , .		2

#	Article	IF	Citations
145	Towards an Informative Mutant Phenotype for Every Bacterial Gene. Journal of Bacteriology, 2014, 196, 3643-3655.	2.2	60
146	Conservation of Transcription Start Sites within Genes across a Bacterial Genus. MBio, 2014, 5, e01398-14.	4.1	56
147	Control of methionine metabolism by the <scp>SahR</scp> transcriptional regulator in <scp>P</scp> roteobacteria. Environmental Microbiology, 2014, 16, 1-8.	3.8	18
148	A versatile framework for microbial engineering using synthetic non-coding RNAs. Nature Reviews Microbiology, 2014, 12, 341-354.	28.6	126
149	The energyâ€conserving electron transfer system used by <scp><i>D</i></scp> <i>esulfovibrio alaskensisstrain <scp>G</scp>20 during pyruvate fermentation involves reduction of endogenously formed fumarate and cytoplasmic and membraneâ€bound complexes, <scp>Hdrâ€Flox</scp>and <scp>Rnf</scp>. Environmental Microbiology. 2014. 16. 3463-3486.</i>	3.8	36
150	Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E836-45.	7.1	595
151	Interactive XCMS Online: Simplifying Advanced Metabolomic Data Processing and Subsequent Statistical Analyses. Analytical Chemistry, 2014, 86, 6931-6939.	6.5	332
152	Fermentation of hydrolysate detoxified by pervaporation through block copolymer membranes. Green Chemistry, 2014, 16, 4206-4213.	9.0	22
153	Metabolomic data streaming for biology-dependent data acquisition. Nature Biotechnology, 2014, 32, 524-527.	17.5	45
154	Genetic basis for nitrate resistance in Desulfovibrio strains. Frontiers in Microbiology, 2014, 5, 153.	3.5	202
155	Selection of chromosomal DNA libraries using a multiplex CRISPR system. ELife, 2014, 3, .	6.0	314
156	Characterization of Wastewater Treatment Plant Microbial Communities and the Effects of Carbon Sources on Diversity in Laboratory Models. PLoS ONE, 2014, 9, e105689.	2.5	7
157	Changes in microbial dynamics during long-term decomposition in tropical forests. Soil Biology and Biochemistry, 2013, 66, 60-68.	8.8	47
158	Dissecting a complex chemical stress: chemogenomic profiling of plant hydrolysates. Molecular Systems Biology, 2013, 9, 674.	7.2	103
159	RegTransBase – a database of regulatory sequences and interactions based on literature: a resource for investigating transcriptional regulation in prokaryotes. BMC Genomics, 2013, 14, 213.	2.8	69
160	Correction: Global analysis of host response to induction of a latent bacteriophage. BMC Microbiology, $2013,13,183.$	3.3	0
161	From Biological Parts to Circuit Design. , 2013, , 63-78.		2
162	Synthetic biology. Current Opinion in Chemical Biology, 2013, 17, 869-870.	6.1	1

#	Article	IF	Citations
163	Composability of regulatory sequences controlling transcription and translation in <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14024-14029.	7.1	377
164	Indirect and suboptimal control of gene expression is widespread in bacteria. Molecular Systems Biology, 2013, 9, 660.	7.2	111
165	Variation among Desulfovibrio Species in Electron Transfer Systems Used for Syntrophic Growth. Journal of Bacteriology, 2013, 195, 990-1004.	2.2	77
166	Effects of Genetic Variation on the E.Âcoli Host-Circuit Interface. Cell Reports, 2013, 4, 231-237.	6.4	75
167	A wise consistency: engineering biology for conformity, reliability, predictability. Current Opinion in Chemical Biology, 2013, 17, 893-901.	6.1	50
168	Modular Design of a Synthetic Payload Delivery Device. ACS Synthetic Biology, 2013, 2, 418-424.	3.8	16
169	Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression. Cell, 2013, 152, 1173-1183.	28.9	4,090
170	Precise and reliable gene expression via standard transcription and translation initiation elements. Nature Methods, 2013, 10, 354-360.	19.0	653
171	Quantitative estimation of activity and quality for collections of functional genetic elements. Nature Methods, 2013, 10, 347-353.	19.0	183
172	Characterization of NaCl tolerance in <i>Desulfovibrio vulgaris</i> Hildenborough through experimental evolution. ISME Journal, 2013, 7, 1790-1802.	9.8	46
173	"Replica-Extraction-Transfer―Nanostructure-Initiator Mass Spectrometry Imaging of Acoustically Printed Bacteria. Analytical Chemistry, 2013, 85, 10856-10862.	6.5	43
174	StressChip as a High-Throughput Tool for Assessing Microbial Community Responses to Environmental Stresses. Environmental Science & Environmental Stresses. Environmental Science & Environmental Scie	10.0	17
175	Metabolic Footprinting of Mutant Libraries to Map Metabolite Utilization to Genotype. ACS Chemical Biology, 2013, 8, 189-199.	3.4	34
176	Draft Genome Sequence for Desulfovibrio africanus Strain PCS. Genome Announcements, 2013, 1, e0014413.	0.8	5
177	Flexibility of Syntrophic Enzyme Systems in Desulfovibrio Species Ensures Their Adaptation Capability to Environmental Changes. Journal of Bacteriology, 2013, 195, 4900-4914.	2.2	37
178	Información de cono regulatore note como from gonomo usido ha cobout fitacos data. Dicinformatica 2012		
	Inference of gene regulatory networks from genome-wide knockout fitness data. Bioinformatics, 2013, 29, 338-346.	4.1	10
179		3.2	30

#	Article	IF	Citations
181	Measurement and modeling of intrinsic transcription terminators. Nucleic Acids Research, 2013, 41, 5139-5148.	14.5	155
182	Transcription Factor Family-Based Reconstruction of Singleton Regulons and Study of the Crp/Fnr, ArsR, and GntR Families in Desulfovibrionales Genomes. Journal of Bacteriology, 2013, 195, 29-38.	2.2	15
183	RegPrecise 3.0 – A resource for genome-scale exploration of transcriptional regulation in bacteria. BMC Genomics, 2013, 14, 745.	2.8	408
184	Metallochaperones Regulate Intracellular Copper Levels. PLoS Computational Biology, 2013, 9, e1002880.	3.2	26
185	Rational and Evolutionary Engineering Approaches Uncover a Small Set of Genetic Changes Efficient for Rapid Xylose Fermentation in Saccharomyces cerevisiae. PLoS ONE, 2013, 8, e57048.	2.5	173
186	Hexavalent Chromium Reduction under Fermentative Conditions with Lactate Stimulated Native Microbial Communities. PLoS ONE, 2013, 8, e83909.	2.5	36
187	Metagenomes of tropical soil-derived anaerobic switchgrass-adapted consortia with and without iron. Standards in Genomic Sciences, 2013, 7, 382-398.	1.5	12
188	RegPrecise web services interface: programmatic access to the transcriptional regulatory interactions in bacteria reconstructed by comparative genomics. Nucleic Acids Research, 2012, 40, W604-W608.	14.5	24
189	Microbial Community Succession during Lactate Amendment and Electron Acceptor Limitation Reveals a Predominance of Metal-Reducing Pelosinus spp. Applied and Environmental Microbiology, 2012, 78, 2082-2091.	3.1	42
190	Functional responses of methanogenic archaea to syntrophic growth. ISME Journal, 2012, 6, 2045-2055.	9.8	66
191	Tracing Determinants of Dual Substrate Specificity in Glycoside Hydrolase Family 5. Journal of Biological Chemistry, 2012, 287, 25335-25343.	3.4	39
192	Draft Genome Sequences for Two Metal-Reducing Pelosinus fermentans Strains Isolated from a Cr(VI)-Contaminated Site and for Type Strain R7. Journal of Bacteriology, 2012, 194, 5147-5148.	2.2	24
193	Draft Genome Sequence of Pelosinus fermentans JBW45, Isolated during <i>In Situ</i> Stimulation for Cr(VI) Reduction. Journal of Bacteriology, 2012, 194, 5456-5457.	2.2	16
194	Engineering robust control of two-component system phosphotransfer using modular scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18090-18095.	7.1	79
195	Engineering naturally occurring trans -acting non-coding RNAs to sense molecular signals. Nucleic Acids Research, 2012, 40, 5775-5786.	14.5	87
196	Functional Characterization of Crp/Fnr-Type Global Transcriptional Regulators in Desulfovibrio vulgaris Hildenborough. Applied and Environmental Microbiology, 2012, 78, 1168-1177.	3.1	32
197	Mutual Information Analysis Reveals Coevolving Residues in Tat That Compensate for Two Distinct Functions in HIV-1 Gene Expression. Journal of Biological Chemistry, 2012, 287, 7945-7955.	3.4	10
198	metaMicrobesOnline: phylogenomic analysis of microbial communities. Nucleic Acids Research, 2012, 41, D648-D654.	14.5	17

#	Article	IF	Citations
199	Chromatin accessibility at the HIV LTR promoter sets a threshold for NF-κB mediated viral gene expression. Integrative Biology (United Kingdom), 2012, 4, 661.	1.3	27
200	An adaptor from translational to transcriptional control enables predictable assembly of complex regulation. Nature Methods, 2012, 9, 1088-1094.	19.0	67
201	RNA processing enables predictable programming of gene expression. Nature Biotechnology, 2012, 30, 1002-1006.	17.5	184
202	Deletion of the Desulfovibrio vulgaris Carbon Monoxide Sensor Invokes Global Changes in Transcription. Journal of Bacteriology, 2012, 194, 5783-5793.	2.2	20
203	Transcriptomic and proteomic analyses of Desulfovibrio vulgaris biofilms: Carbon and energy flow contribute to the distinct biofilm growth state. BMC Genomics, 2012, 13, 138.	2.8	67
204	Manipulation of the carbon storage regulator system for metabolite remodeling and biofuel production in Escherichia coli. Microbial Cell Factories, 2012, 11, 79.	4.0	53
205	Sequestrationâ€based bistability enables tuning of the switching boundaries and design of a latch. Molecular Systems Biology, 2012, 8, 620.	7.2	83
206	Rationally designed families of orthogonal RNA regulators of translation. Nature Chemical Biology, 2012, 8, 447-454.	8.0	157
207	Contextualizing context for synthetic biology – identifying causes of failure of synthetic biological systems. Biotechnology Journal, 2012, 7, 856-866.	3.5	394
208	The hunt for the biological transistor. IEEE Spectrum, 2011, 48, 38-43.	0.7	9
209	Multiplexed RNA structure characterization with selective 2′-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11063-11068.	7.1	346
210	Comparative genomic reconstruction of transcriptional networks controlling central metabolism in the Shewanella genus. BMC Genomics, 2011, 12, S3.	2.8	59
211	Systematic mapping of two component response regulators to gene targets in a model sulfate reducing bacterium. Genome Biology, 2011, 12, R99.	9.6	49
212	Network News: Innovations in 21st Century Systems Biology. Cell, 2011, 144, 844-849.	28.9	57
213	Microfluidic fluorescence in situ hybridization and flow cytometry (μFlowFISH). Lab on A Chip, 2011, 11, 2673.	6.0	58
214	Toward rational design of bacterial genomes. Current Opinion in Microbiology, 2011, 14, 624-630.	5.1	34
215	How sulphate-reducing microorganisms cope with stress: lessons from systems biology. Nature Reviews Microbiology, 2011, 9, 452-466.	28.6	169
216	Comparative Genomics of the Dormancy Regulons in Mycobacteria. Journal of Bacteriology, 2011, 193, 3446-3452.	2.2	48

#	Article	IF	CITATIONS
217	Meta-analysis of global metabolomics and proteomics data to link alterations with phenotype. Spectroscopy, 2011, 26, 151-154.	0.8	0
218	Complete genome sequence of "Enterobacter lignolyticus―SCF1. Standards in Genomic Sciences, 2011, 5, 69-85.	1.5	76
219	Regulation of transcription by unnatural amino acids. Nature Biotechnology, 2011, 29, 164-168.	17. 5	32
220	Varying virulence: epigenetic control of expression noise and disease processes. Trends in Biotechnology, 2011, 29, 517-525.	9.3	57
221	Joint DAC/IWBDA special session design and synthesis of biological circuits. , 2011, , .		0
222	Evidence-Based Annotation of Transcripts and Proteins in the Sulfate-Reducing Bacterium Desulfovibrio vulgaris Hildenborough. Journal of Bacteriology, 2011, 193, 5716-5727.	2.2	28
223	Modeling sporulation decisions in Bacillus subtilis as optimal evolutionary decision-making. , 2011, , .		1
224	GLAMM: Genome-Linked Application for Metabolic Maps. Nucleic Acids Research, 2011, 39, W400-W405.	14.5	26
225	WIST: toolkit for rapid, customized LIMS development. Bioinformatics, 2011, 27, 437-438.	4.1	9
226	Bayesian multiple-instance motif discovery with BAMBI: inference of recombinase and transcription factor binding sites. Nucleic Acids Research, 2011, 39, e146-e146.	14.5	12
227	Modeling and automation of sequencing-based characterization of RNA structure. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11069-11074.	7.1	109
228	Versatile RNA-sensing transcriptional regulators for engineering genetic networks. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8617-8622.	7.1	277
229	Evidence-Based Annotation of Gene Function in Shewanella oneidensis MR-1 Using Genome-Wide Fitness Profiling across 121 Conditions. PLoS Genetics, 2011, 7, e1002385.	3.5	119
230	Towards a Rigorous Network of Protein-Protein Interactions of the Model Sulfate Reducer Desulfovibrio vulgaris Hildenborough. PLoS ONE, 2011, 6, e21470.	2.5	12
231	Simulated niche partitioning by bacteria. , 2011, , 10-22.		0
232	Design and Construction of a Double Inversion Recombination Switch for Heritable Sequential Genetic Memory., 2011,, 175-196.		0
233	BglBricks: A flexible standard for biological part assembly. Journal of Biological Engineering, 2010, 4, 1.	4.7	348
234	Impact of elevated nitrate on sulfate-reducing bacteria: a comparative Study of <i>Desulfovibrio vulgaris</i> . ISME Journal, 2010, 4, 1386-1397.	9.8	67

#	Article	IF	Citations
235	Hydrogen peroxideâ€induced oxidative stress responses in <i>Desulfovibrio vulgaris</i> Hildenborough. Environmental Microbiology, 2010, 12, 2645-2657.	3.8	46
236	Combinatorial Latency Reactivation for HIV-1 Subtypes and Variants. Journal of Virology, 2010, 84, 5958-5974.	3.4	97
237	MicrobesOnline: an integrated portal for comparative and functional genomics. Nucleic Acids Research, 2010, 38, D396-D400.	14.5	408
238	RegPrecise: a database of curated genomic inferences of transcriptional regulatory interactions in prokaryotes. Nucleic Acids Research, 2010, 38, D111-D118.	14.5	172
239	A universal TagModule collection for parallel genetic analysis of microorganisms. Nucleic Acids Research, 2010, 38, e146-e146.	14.5	54
240	Development of a Low Bias Method for Characterizing Viral Populations Using Next Generation Sequencing Technology. PLoS ONE, 2010, 5, e13564.	2.5	58
241	Global Transcriptional, Physiological, and Metabolite Analyses of the Responses of <i>Desulfovibrio vulgaris</i> Hildenborough to Salt Adaptation. Applied and Environmental Microbiology, 2010, 76, 1574-1586.	3.1	64
242	Detailed Simulations of Cell Biology with Smoldyn 2.1. PLoS Computational Biology, 2010, 6, e1000705.	3.2	285
243	HIV Promoter Integration Site Primarily Modulates Transcriptional Burst Size Rather Than Frequency. PLoS Computational Biology, 2010, 6, e1000952.	3.2	95
244	Computational Models of HIV-1 Resistance to Gene Therapy Elucidate Therapy Design Principles. PLoS Computational Biology, 2010, 6, e1000883.	3.2	14
245	RegPredict: an integrated system for regulon inference in prokaryotes by comparative genomics approach. Nucleic Acids Research, 2010, 38, W299-W307.	14.5	130
246	The Case for RNA. Science, 2010, 330, 1185-1186.	12.6	14
247	Sequencing of Multiple Clostridial Genomes Related to Biomass Conversion and Biofuel Production. Journal of Bacteriology, 2010, 192, 6494-6496.	2.2	81
248	Inference of binding sites with a Bayesian multiple-instance motif discovery method., 2010,,.		0
249	FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE, 2010, 5, e9490.	2.5	11,284
250	Engineering mRNA structural regulation of transcription using an RNAâ€sensing riboregulator. FASEB Journal, 2010, 24, .	0.5	0
251	FastTree: Computing Large Minimum Evolution Trees with Profiles instead of a Distance Matrix. Molecular Biology and Evolution, 2009, 26, 1641-1650.	8.9	4,165
252	The Electron Transfer System of Syntrophically Grown <i>Desulfovibrio vulgaris</i> Bacteriology, 2009, 191, 5793-5801.	2.2	133

#	Article	IF	Citations
253	Expression profiling of hypothetical genes in Desulfovibrio vulgaris leads to improved functional annotation. Nucleic Acids Research, 2009, 37, 2926-2939.	14.5	22
254	Complexity in bacterial cell–cell communication: Quorum signal integration and subpopulation signaling in the <i>Bacillus subtilis</i> phosphorelay. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6459-6464.	7.1	88
255	Control of Stochastic Gene Expression by Host Factors at the HIV Promoter. PLoS Pathogens, 2009, 5, e1000260.	4.7	98
256	Novel insights into iron metabolism by integrating deletome and transcriptome analysis in an iron deficiency model of the yeast Saccharomyces cerevisiae. BMC Genomics, 2009, 10, 130.	2.8	35
257	Snapshot of iron response in Shewanella oneidensis by gene network reconstruction. BMC Genomics, 2009, 10, 131.	2.8	56
258	Metabolic flux analysis of <i>Shewanella</i> spp. reveals evolutionary robustness in central carbon metabolism. Biotechnology and Bioengineering, 2009, 102, 1161-1169.	3.3	49
259	Invariability of central metabolic flux distribution in <i>Shewanella oneidensis</i> MR†under environmental or genetic perturbations. Biotechnology Progress, 2009, 25, 1254-1259.	2.6	34
260	Contribution of mobile genetic elements to <i>Desulfovibrio vulgaris</i> genome plasticity. Environmental Microbiology, 2009, 11, 2244-2252.	3.8	20
261	Evolution, ecology and the engineered organism: lessons for synthetic biology. Genome Biology, 2009, 10, 114.	9.6	7
262	Comparative Genomics of Regulation of Fatty Acid and Branched-Chain Amino Acid Utilization in Proteobacteria. Journal of Bacteriology, 2009, 191, 52-64.	2.2	115
263	Complex Systems: From chemistry to systems biology. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6433-6434.	7.1	44
264	Stochastic Models of Biological Processes. , 2009, , 8730-8749.		24
265	Environmental Genomics Reveals a Single-Species Ecosystem Deep Within Earth. Science, 2008, 322, 275-278.	12.6	474
266	Setting the standard in synthetic biology. Nature Biotechnology, 2008, 26, 771-774.	17.5	171
267	Horizontal gene transfer and the evolution of transcriptional regulation in Escherichia coli. Genome Biology, 2008, 9, R4.	9.6	116
268	Toward scalable parts families for predictable design of biological circuits. Current Opinion in Microbiology, 2008, 11, 567-573.	5.1	106
269	Modularity of stress response evolution. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7500-7505.	7.1	53
270	Identification of Genes Involved in the Toxic Response of Saccharomyces cerevisiae against Iron and Copper Overload by Parallel Analysis of Deletion Mutants. Toxicological Sciences, 2008, 101, 140-151.	3.1	81

#	Article	IF	Citations
271	A Dual Receptor Crosstalk Model of G-Protein-Coupled Signal Transduction. PLoS Computational Biology, 2008, 4, e1000185.	3 . 2	38
272	Identification of Genes Involved in the Toxic Response of Saccharomyces cerevisiae against Iron and Copper Overload by Parallel Analysis of Deletion Mutants. Toxicological Sciences, 2008, 102, 205-205.	3.1	7
273	Appreciation of the Machinations of the Blind Watchmaker. IEEE Transactions on Automatic Control, 2008, 53, 8-9.	5.7	3
274	Memory in Microbes: Quantifying History-Dependent Behavior in a Bacterium. PLoS ONE, 2008, 3, e1700.	2.5	115
275	Design and Construction of a Double Inversion Recombination Switch for Heritable Sequential Genetic Memory. PLoS ONE, 2008, 3, e2815.	2.5	123
276	FastBLAST: Homology Relationships for Millions of Proteins. PLoS ONE, 2008, 3, e3589.	2.5	14
277	Genetics and Genomics of Sulfate Respiration in Desulfovibrio. , 2008, , 1-12.		13
278	Environmental signal integration by a modular AND gate. Molecular Systems Biology, 2007, 3, 133.	7.2	306
279	Orthologous Transcription Factors in Bacteria Have Different Functions and Regulate Different Genes. PLoS Computational Biology, 2007, 3, e175.	3.2	86
280	RegTransBase-a database of regulatory sequences and interactions in a wide range of prokaryotic genomes. Nucleic Acids Research, 2007, 35, D407-D412.	14.5	95
281	Cell-Wide Responses to Low-Oxygen Exposure in <i>Desulfovibrio vulgaris</i> Hildenborough. Journal of Bacteriology, 2007, 189, 5996-6010.	2.2	94
282	Analysis of a Ferric Uptake Regulator (Fur) Mutant of <i>Desulfovibrio vulgaris</i> Hildenborough. Applied and Environmental Microbiology, 2007, 73, 5389-5400.	3.1	70
283	Response of <i>Desulfovibrio vulgaris</i> to Alkaline Stress. Journal of Bacteriology, 2007, 189, 8944-8952.	2.2	62
284	Modeling and Network Organization., 2007,, 47-81.		1
285	Processing Single-Cell Single-Molecule Genomic Information: New Methods for New Data. Conference Record of the Asilomar Conference on Signals, Systems and Computers, 2007, , .	0.0	0
286	A Mechanical Explanation for Cytoskeletal Rings and Helices in Bacteria. Biophysical Journal, 2007, 93, 1872-1884.	0.5	34
287	Efficient stochastic sensitivity analysis of discrete event systems. Journal of Computational Physics, 2007, 221, 724-738.	3.8	73
288	Global analysis of host response to induction of a latent bacteriophage. BMC Microbiology, 2007, 7, 82.	3.3	44

#	Article	IF	Citations
289	Systems Biology: A Switch for Sex. Current Biology, 2007, 17, R410-R412.	3.9	3
290	Fast, cheap and somewhat in control. Genome Biology, 2006, 7, 114.	9.6	82
291	From Fluctuations to Phenotypes: The Physiology of Noise. Science's STKE: Signal Transduction Knowledge Environment, 2006, 2006, re17-re17.	3.9	108
292	Salt Stress in Desulfovibrio vulgaris Hildenborough: an Integrated Genomics Approach. Journal of Bacteriology, 2006, 188, 4068-4078.	2,2	155
293	Averaging Methods for Stochastic Dynamics of Complex Reaction Networks: Description of Multiscale Couplings. Multiscale Modeling and Simulation, 2006, 5, 497-513.	1.6	3
294	Model Discrimination Using Data Collaborationâ€. Journal of Physical Chemistry A, 2006, 110, 6803-6813.	2.5	55
295	Environmentally Controlled Invasion of Cancer Cells by Engineered Bacteria. Journal of Molecular Biology, 2006, 355, 619-627.	4.2	547
296	Deviant effects in molecular reaction pathways. Nature Biotechnology, 2006, 24, 1235-1240.	17.5	113
297	Genomics for environmental microbiology. Current Opinion in Biotechnology, 2006, 17, 229-235.	6.6	63
298	The Histidine Operon Is Ancient. Journal of Molecular Evolution, 2006, 62, 807-808.	1.8	9
299	Simulating cell biology. Current Biology, 2006, 16, R523-R527.	3.9	29
300	OpWise: operons aid the identification of differentially expressed genes in bacterial microarray experiments. BMC Bioinformatics, 2006, 7, 19.	2.6	19
301	A tightly regulated inducible expression system utilizing thefim inversion recombination switch. Biotechnology and Bioengineering, 2006, 94, 1-4.	3.3	70
302	The Evolution of Two-Component Systems in Bacteria Reveals Different Strategies for Niche Adaptation. PLoS Computational Biology, 2006, 2, e143.	3.2	181
303	The Life-Cycle of Operons. PLoS Genetics, 2006, 2, e96.	3.5	146
304	Cellular Response of Shewanella oneidensis to Strontium Stress. Applied and Environmental Microbiology, 2006, 72, 890-900.	3.1	44
305	Morphology matters in immune cell chemotaxis: membrane asymmetry affects amplification. Physical Biology, 2006, 3, 190-199.	1.8	22
306	Transcriptome Profiling of Shewanella oneidensis Gene Expression following Exposure to Acidic and Alkaline pH. Journal of Bacteriology, 2006, 188, 1633-1642.	2.2	62

#	Article	IF	Citations
307	Global Analysis of Heat Shock Response in <i>Desulfovibrio vulgaris</i> Hildenborough. Journal of Bacteriology, 2006, 188, 1817-1828.	2.2	106
308	Energetic Consequences of Nitrite Stress in Desulfovibrio vulgaris Hildenborough, Inferred from Global Transcriptional Analysis. Applied and Environmental Microbiology, 2006, 72, 4370-4381.	3.1	92
309	Autonomous Mobile Robot Control Based on White Blood Cell Chemotaxis. Lecture Notes in Computer Science, 2005, , 9-19.	1.3	3
310	Diversity in times of adversity: probabilistic strategies in microbial survival games. Journal of Theoretical Biology, 2005, 234, 227-253.	1.7	251
311	A microbial modified prisoner's dilemma game: how frequency-dependent selection can lead to random phase variation. Journal of Theoretical Biology, 2005, 234, 255-262.	1.7	39
312	A latent variable model for chemogenomic profiling. Bioinformatics, 2005, 21, 3286-3293.	4.1	53
313	Genome-Wide Requirements for Resistance to Functionally Distinct DNA-Damaging Agents. PLoS Genetics, 2005, 1, e24.	3.5	144
314	Dissimilatory Metabolism of Nitrogen Oxides in Bacteria: Comparative Reconstruction of Transcriptional Networks. PLoS Computational Biology, 2005, 1, e55.	3.2	260
315	Operon formation is driven by co-regulation and not by horizontal gene transfer. Genome Research, 2005, 15, 809-819.	5.5	131
316	Transcriptome Analysis of Shewanella oneidensis MR-1 in Response to Elevated Salt Conditions. Journal of Bacteriology, 2005, 187, 2501-2507.	2.2	74
317	The MicrobesOnline Web site for comparative genomics. Genome Research, 2005, 15, 1015-1022.	5.5	176
318	Numerical computation of diffusion on a surface. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11151-11156.	7.1	43
319	Stochastic amplification and signaling in enzymatic futile cycles through noise-induced bistability with oscillations. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2310-2315.	7.1	304
320	The Bacillus subtilis sin Operon. Genetics, 2005, 169, 1187-1202.	2.9	59
321	Phosphatase localization in bacterial chemotaxis: divergent mechanisms, convergent principles. Physical Biology, 2005, 2, 148-158.	1.8	27
322	A novel method for accurate operon predictions in all sequenced prokaryotes. Nucleic Acids Research, 2005, 33, 880-892.	14.5	316
323	Interruptions in gene expression drive highly expressed operons to the leading strand of DNA replication. Nucleic Acids Research, 2005, 33, 3224-3234.	14.5	64
324	Stochastic Gene Expression in a Lentiviral Positive-Feedback Loop: HIV-1 Tat Fluctuations Drive Phenotypic Diversity. Cell, 2005, 122, 169-182.	28.9	599

#	Article	lF	Citations
325	Dissimilatory Metabolism of Nitrogen Oxides in Bacteria: Comparative Reconstruction of Transcriptional Networks. PLoS Computational Biology, 2005, preprint, e55.	3.2	4
326	Global Transcriptome Analysis of the Heat Shock Response of Shewanella oneidensis. Journal of Bacteriology, 2004, 186, 7796-7803.	2.2	173
327	Design and Diversity in Bacterial Chemotaxis: A Comparative Study in Escherichia coli and Bacillus subtilis. PLoS Biology, 2004, 2, e49.	5.6	130
328	The evolution of genetic regulatory systems in bacteria. Nature Reviews Genetics, 2004, 5, 169-178.	16.3	140
329	The old switcheroo: new tricks revealed in â€~Phage Lambda Revisited'. Current Biology, 2004, 14, R543-R544.	3.9	0
330	Response experiments for nonlinear systems with application to reaction kinetics and genetics. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7223-7228.	7.1	27
331	Chemogenomic profiling: Identifying the functional interactions of small molecules in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 793-798.	7.1	460
332	Reconstruction of regulatory and metabolic pathways in metal-reducing delta-proteobacteria. Genome Biology, 2004, 5, R90.	9.6	162
333	An Allosteric Model for Transmembrane Signaling in Bacterial Chemotaxis. Journal of Molecular Biology, 2004, 343, 291-303.	4.2	32
334	Biological networks. Current Opinion in Structural Biology, 2003, 13, 193-202.	5.7	298
335	The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics, 2003, 19, 524-531.	4.1	2,811
336	Motifs, modules and games in bacteria. Current Opinion in Microbiology, 2003, 6, 125-134.	5.1	280
337	Stochastic chemical kinetics and the quasi-steady-state assumption: Application to the Gillespie algorithm. Journal of Chemical Physics, 2003, 118, 4999-5010.	3.0	542
338	Theoretical Design of a Gene Therapy To Prevent AIDS but Not Human Immunodeficiency Virus Type 1 Infection. Journal of Virology, 2003, 77, 10028-10036.	3.4	60
339	Motifs and modules in cellular signal processing. , 2002, , .		0
340	GENETIC"CODE― Representations and Dynamical Models of Genetic Components and Networks. Annual Review of Genomics and Human Genetics, 2002, 3, 341-369.	6.2	80
341	Determination of causal connectivities of species in reaction networks. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 5816-5821.	7.1	98
342	Signal Processing by Simple Chemical Systems. Journal of Physical Chemistry A, 2002, 106, 10205-10221.	2.5	88

#	Article	IF	Citations
343	Fifteen Minutes offim: Control of Type 1 Pili Expression inE. coli. OMICS A Journal of Integrative Biology, 2002, 6, 91-114.	2.0	39
344	Functional profiling of the Saccharomyces cerevisiae genome. Nature, 2002, 418, 387-391.	27.8	3,938
345	Control, exploitation and tolerance of intracellular noise. Nature, 2002, 420, 231-237.	27.8	909
346	Overview of the Alliance for Cellular Signaling. Nature, 2002, 420, 703-706.	27.8	134
347	Motifs and modules in cellular signal processing. , 2002, , .		0
348	Control Motifs for Intracellular Regulatory Networks. Annual Review of Biomedical Engineering, 2001, 3, 391-419.	12.3	112
349	Synthetic cell biology. Current Opinion in Biotechnology, 2001, 12, 638-644.	6.6	85
350	On the deduction of chemical reaction pathways from measurements of time series of concentrations. Chaos, 2001, 11, 108.	2.5	71
351	Signal processing by biochemical reaction networks. , 2000, , 112-144.		21
352	Gene regulation: Towards a circuit engineering discipline. Current Biology, 2000, 10, R318-R320.	3.9	91
353	It's a noisy business! Genetic regulation at the nanomolar scale. Trends in Genetics, 1999, 15, 65-69.	6.7	791
354	SIMULATION OF PROKARYOTIC GENETIC CIRCUITS. Annual Review of Biophysics and Biomolecular Structure, 1998, 27, 199-224.	18.3	237
355	Stochastic Kinetic Analysis of Developmental Pathway Bifurcation in Phage λ-Infected Escherichia coli Cells. Genetics, 1998, 149, 1633-1648.	2.9	1,272
356	Stochastic mechanisms in gene expression. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 814-819.	7.1	1,617
357	Steady-State Measurements on the Fructose 6-Phosphate/Fructose 1,6-Bisphosphate Interconversion Cycle. Journal of Physical Chemistry B, 1997, 101, 3872-3876.	2.6	11
358	A Test Case of Correlation Metric Construction of a Reaction Pathway from Measurements. Science, 1997, 277, 1275-1279.	12.6	253
359	Experimental Evidence for Turing Structures. The Journal of Physical Chemistry, 1995, 99, 10417-10419.	2.9	23
360	Statistical Construction of Chemical Reaction Mechanisms from Measured Time-Series. The Journal of Physical Chemistry, 1995, 99, 970-979.	2.9	118

#	Article	IF	CITATIONS
361	Computational functions in biochemical reaction networks. Biophysical Journal, 1994, 67, 560-578.	0.5	207
362	Digital Imaging Spectroscopy., 1993,, 133-155.		5
363	An algorithm for protein engineering: simulations of recursive ensemble mutagenesis Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 7811-7815.	7.1	28
364	Optimizing Nucleotide Mixtures to Encode Specific Subsets of Amino Acids for Semi-Random Mutagenesis. Nature Biotechnology, 1992, 10, 297-300.	17.5	36
365	Applications of Imaging Spectroscopy in Molecular Biology II. Colony Screening Based on Absorption Spectra. Nature Biotechnology, 1990, 8, 746-749.	17.5	17
366	Playing practical games with bacteria and viruses: exploring the molecular mechanisms behind clever cellular stratagems. , 0 , , .		2
367	Motifs and modules in cellular signal processing: applications to microbial stress response pathways. , 0, , .		0