
Marco S Reis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4788207/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Forecasting the research octane number in a Continuous Catalyst Regeneration (CCR) reformer. Quality and Reliability Engineering International, 2022, 38, 1463-1481.	2.3	1
2	Cluster analysis of crude oils with k-means based on their physicochemical properties. Computers and Chemical Engineering, 2022, 157, 107633.	3.8	9
3	Machine Learning Techniques Disclose the Combined Effect of Fermentation Conditions on Yeast Mixed-Culture Dynamics and Wine Quality. Microorganisms, 2022, 10, 107.	3.6	5
4	Data-Driven Process System Engineering–Contributions to its consolidation following the path laid down by George Stephanopoulos. Computers and Chemical Engineering, 2022, 159, 107675.	3.8	2
5	Predicting the Lifetime of Lithium-Ion Batteries: Integrated feature extraction and modeling through sequential Unsupervised-Supervised Projections (USP). Chemical Engineering Science, 2022, 252, 117510.	3.8	3
6	0-Dimensional Persistent Homology Analysis Implementation in Resource-Scarce Embedded Systems. Sensors, 2022, 22, 3657.	3.8	1
7	Linear and Non-Linear Soft Sensors for Predicting the Research Octane Number (RON) through Integrated Synchronization, Resolution Selection and Modelling. Sensors, 2022, 22, 3734.	3.8	4
8	Chitosan-xanthan gum PEC-based aerogels: A chemically stable PEC in scCO2. Materials Chemistry and Physics, 2022, 287, 126294.	4.0	9
9	Evaluation of the Microbiological Effectiveness of Three Accessible Mask Decontamination Methods and Their Impact on Filtration, Air Permeability and Physicochemical Properties. International Journal of Environmental Research and Public Health, 2022, 19, 6567.	2.6	2
10	2017 world state of quality: first worldwide results. Total Quality Management and Business Excellence, 2021, 32, 379-388.	3.8	0
11	Discussion: Process data streams aggregation versus product samples aggregation. Journal of Quality Technology, 2021, 53, 33-37.	2.5	4
12	Multi-source Heterogeneous Data Fusion for Toxin Level Quantification. IFAC-PapersOnLine, 2021, 54, 67-72.	0.9	3
13	A scalable approach for the efficient segmentation of hyperspectral images. Chemometrics and Intelligent Laboratory Systems, 2021, 213, 104314.	3.5	3
14	A Spectral AutoML approach for industrial soft sensor development: Validation in an oil refinery plant. Computers and Chemical Engineering, 2021, 150, 107324.	3.8	7
15	Prediction of Sugar Content in Port Wine Vintage Grapes Using Machine Learning and Hyperspectral Imaging. Processes, 2021, 9, 1241.	2.8	8
16	Improving the sensitivity of statistical process monitoring of manifolds embedded in high-dimensional spaces: The truncated-Q statistic. Chemometrics and Intelligent Laboratory Systems, 2021, 215, 104369.	3.5	6
17	Special Issue "Advanced Process Monitoring for Industry 4.0― Processes, 2021, 9, 1432.	2.8	1
18	Recent trends on hybrid modeling for Industry 4.0. Computers and Chemical Engineering, 2021, 151, 107365.	3.8	110

#	Article	IF	CITATIONS
19	PAT soft sensors for wide range prediction of key properties of diesel fuels and blending components for the oil industry. Computers and Chemical Engineering, 2021, 153, 107449.	3.8	6
20	Data-centric process systems engineering: A push towards PSE 4.0. Computers and Chemical Engineering, 2021, 155, 107529.	3.8	14
21	Determination of Sugar, pH, and Anthocyanin Contents in Port Wine Grape Berries through Hyperspectral Imaging: An Extensive Comparison of Linear and Non-Linear Predictive Methods. Applied Sciences (Switzerland), 2021, 11, 10319.	2.5	5
22	Macroquality measurement: world state of quality and European quality scoreboard approaches and results. Total Quality Management and Business Excellence, 2020, 31, 1060-1076.	3.8	7
23	Predicting ships' CO 2 emissions using featureâ€oriented methods. Applied Stochastic Models in Business and Industry, 2020, 36, 110-123.	1.5	9
24	Quality by design in pharmaceutical manufacturing: A systematic review of current status, challenges and future perspectives. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 147, 19-37.	4.3	107
25	Cluster Analysis of Crude Oils based on Physicochemical Properties. Computer Aided Chemical Engineering, 2020, 48, 541-546.	0.5	1
26	An integrated multiresolution framework for quality prediction and process monitoring in batch processes. Journal of Manufacturing Systems, 2020, 57, 198-216.	13.9	15
27	Data preprocessing for multiblock modelling – A systematization with new methods. Chemometrics and Intelligent Laboratory Systems, 2020, 199, 103959.	3.5	29
28	A systematic PAT Soft Sensor screening and development methodology applied to the prediction of free fatty acids in industrial biodiesel production. Fuel, 2020, 282, 118800.	6.4	5
29	First Principles Statistical Process Monitoring of High-Dimensional Industrial Microelectronics Assembly Processes. Processes, 2020, 8, 1520.	2.8	11
30	Sialic acids expression in newborn rat lungs: implications for pulmonary developmental biology. Acta Histochemica, 2020, 122, 151626.	1.8	4
31	Advanced Predictive Modelling applied to the Chemical Stabilization of Soft Soils. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 2020, , 1-33.	1.6	2
32	Bayesian predictive optimization of multiple and profile response systems in the process industry: A review and extensions. Chemometrics and Intelligent Laboratory Systems, 2020, 206, 104121.	3.5	8
33	Presence of N-acetylneuraminic acid in the lung during postnatal development. European Journal of Histochemistry, 2020, 64, .	1.5	1
34	Data-Driven Modelling of the Complex Interaction between Flocculant Properties and Floc Size and Structure. Processes, 2020, 8, 349.	2.8	5
35	Multi-target optimization of solid phase microextraction to analyse key flavour compounds in wort and beer. Food Chemistry, 2020, 317, 126466.	8.2	9
36	Sensor Fusion with Irregular Sampling and Varying Measurement Delays. Industrial & Engineering Chemistry Research, 2020, 59, 2328-2340.	3.7	7

#	Article	IF	CITATIONS
37	Discussion of "Industrial statistics and manifold data― Quality Engineering, 2020, 32, 168-172.	1.1	0
38	Predictive analytics in the petrochemical industry: Research Octane Number (RON) forecasting and analysis in an industrial catalytic reforming unit. Computers and Chemical Engineering, 2020, 139, 106912.	3.8	15
39	A physics-informed Run-to-Run control framework for semiconductor manufacturing. Expert Systems With Applications, 2020, 155, 113424.	7.6	11
40	Multirate fusion of data sources with different quality. IFAC-PapersOnLine, 2020, 53, 194-199.	0.9	0
41	Platforms for Automatic PAT Soft Sensor Development and Analysis. IFAC-PapersOnLine, 2020, 53, 11332-11337.	0.9	1
42	A Structure Data-Driven Framework for Virtual Metrology Modeling. IEEE Transactions on Automation Science and Engineering, 2019, , 1-10.	5.2	9
43	Mechanistic Modeling and Simulation for Process Data Generation. Industrial & Engineering Chemistry Research, 2019, 58, 17871-17884.	3.7	3
44	Optimal fusion of industrial data streams with different granularities. Computers and Chemical Engineering, 2019, 130, 106564.	3.8	5
45	Data-driven methods for batch data analysis – A critical overview and mapping on the complexity scale. Computers and Chemical Engineering, 2019, 124, 1-13.	3.8	52
46	SS-DAC: A systematic framework for selecting the best modeling approach and pre-processing for spectroscopic data. Computers and Chemical Engineering, 2019, 128, 437-449.	3.8	13
47	Incorporation of process-specific structure in statistical process monitoring: A review. Journal of Quality Technology, 2019, 51, 407-421.	2.5	22
48	Multiscale and Multi-Granularity Process Analytics: A Review. Processes, 2019, 7, 61.	2.8	22
49	Multiresolution interval partial least squares: A framework for waveband selection and resolution optimization. Chemometrics and Intelligent Laboratory Systems, 2019, 186, 41-54.	3.5	10
50	Multiresponse and multiobjective latent variable optimization of modern analytical instrumentation for the quantification of chemically related families of compounds: Case study—Solidâ€phase microextraction (SPME) applied to the quantification of analytes with impact on wine aroma. Journal of Chemometrics, 2019, 33, e3103.	1.3	7
51	Design of Experiments: A comparison study from the nonâ€expert user's perspective. Journal of Chemometrics, 2019, 33, e3087.	1.3	19
52	Wide spectrum feature selection (WiSe) for regression model building. Computers and Chemical Engineering, 2019, 121, 99-110.	3.8	11
53	An Advanced Data-Centric Multi-Granularity Platform for Industrial Data Analysis. Computer Aided Chemical Engineering, 2019, , 1225-1230.	0.5	1
54	Establishing the optimal blocks' order in SOâ€PLS: Stepwise SOâ€PLS and alternative formulations. Journal of Chemometrics, 2018, 32, e3032.	1.3	6

#	Article	IF	CITATIONS
55	Building Optimal Multiresolution Soft Sensors for Continuous Processes. Industrial & Engineering Chemistry Research, 2018, 57, 9750-9765.	3.7	18
56	A Systematic Methodology for Comparing Batch Process Monitoring Methods: Part Il—Assessing Detection Speed. Industrial & Engineering Chemistry Research, 2018, 57, 5338-5350.	3.7	7
57	Finding the optimal time resolution for batch-end quality prediction: MRQP – A framework for multi-resolution quality prediction. Chemometrics and Intelligent Laboratory Systems, 2018, 172, 150-158.	3.5	20
58	Incorporating Systems Structure in Data-Driven High-Dimensional Predictive Modeling. Computer Aided Chemical Engineering, 2018, 43, 1039-1044.	0.5	0
59	VIRTUAL METROLOGY MODELING BASED ON GAUSSIAN BAYESIAN NETWORK. , 2018, , .		1
60	A Systematic Framework for Assessing the Quality of Information in Data-Driven Applications for the Industry 4.0. IFAC-PapersOnLine, 2018, 51, 43-48.	0.9	6
61	Multiresolution Analytics for Large Scale Industrial Processes. IFAC-PapersOnLine, 2018, 51, 464-469.	0.9	1
62	Distribution models for nitrophenols in a liquid-liquid system. Chemical Engineering Science, 2018, 189, 266-276.	3.8	4
63	Advanced run-to-run controller in semiconductor manufacturing with real-time equipment condition: APC: Advanced process control; AM: Advanced metrology. , 2018, , .		0
64	Optimal selection of time resolution for batch data analysis. Part I: Predictive modeling. AICHE Journal, 2018, 64, 3923-3933.	3.6	7
65	Definitive Screening Designs and latent variable modelling for the optimization of solid phase microextraction (SPME): Case study - Quantification of volatile fatty acids in wines. Chemometrics and Intelligent Laboratory Systems, 2018, 179, 73-81.	3.5	13
66	Image-based manufacturing analytics: Improving the accuracy of an industrial pellet classification system using deep neural networks. Chemometrics and Intelligent Laboratory Systems, 2018, 180, 26-35.	3.5	18
67	Assessing the value of information of dataâ€centric activities in the chemical processing industry 4.0. AICHE Journal, 2018, 64, 3868-3881.	3.6	39
68	Which regression method to use? Making informed decisions in "data-rich/knowledge poor―scenarios – The Predictive Analytics Comparison framework (PAC). Chemometrics and Intelligent Laboratory Systems, 2018, 181, 52-63.	3.5	18
69	Translation-Invariant Multiscale Energy-Based PCA for Monitoring Batch Processes in Semiconductor Manufacturing. IEEE Transactions on Automation Science and Engineering, 2017, 14, 894-904.	5.2	45
70	A structured overview on the use of computational simulators for teaching statistical methods. Quality Engineering, 2017, 29, 730-744.	1.1	14
71	Sorption, degradation and transport phenomena of alcohol ethoxysulfates in agricultural soils. Laboratory studies. Chemosphere, 2017, 171, 661-670.	8.2	1
72	Markovian and Non-Markovian sensitivity enhancing transformations for process monitoring. Chemical Engineering Science, 2017, 163, 223-233.	3.8	22

#	Article	IF	CITATIONS
73	Advanced predictive methods for wine age prediction: Part II – A comparison study of multiblock regression approaches. Talanta, 2017, 171, 132-142.	5.5	22
74	Assessment and Prediction of Lubricant Oil Properties Using Infrared Spectroscopy and Advanced Predictive Analytics. Energy & Fuels, 2017, 31, 179-187.	5.1	24
75	Retrospective Quality by Design (rQbD) applied to the optimization of orodispersible films. International Journal of Pharmaceutics, 2017, 528, 655-663.	5.2	19
76	A comparison of advanced regression techniques for predicting ship CO ₂ emissions. Quality and Reliability Engineering International, 2017, 33, 1281-1292.	2.3	25
77	A data-driven approach for the study of coagulation phenomena in waste lubricant oils and its relevance in alkaline regeneration treatments. Science of the Total Environment, 2017, 599-600, 2054-2064.	8.0	8
78	Multiresolution Soft Sensors: A New Class of Model Structures for Handling Multiresolution Data. Industrial & Engineering Chemistry Research, 2017, 56, 3640-3654.	3.7	23
79	A Unifying and Integrated Framework for Feature Oriented Analysis of Batch Processes. Industrial & Engineering Chemistry Research, 2017, 56, 8590-8605.	3.7	20
80	Assessment of co-composting process with high load of an inorganic industrial waste. Waste Management, 2017, 59, 80-89.	7.4	12
81	Advanced predictive methods for wine age prediction: Part I – A comparison study of single-block regression approaches based on variable selection, penalized regression, latent variables and tree-based ensemble methods. Talanta, 2017, 171, 341-350.	5.5	18
82	Industrial Process Monitoring in the Big Data/Industry 4.0 Era: from Detection, to Diagnosis, to Prognosis. Processes, 2017, 5, 35.	2.8	180
83	Improved Fault Diagnosis in Online Process Monitoring of Complex Networked Processes: a Data-Driven Approach. Computer Aided Chemical Engineering, 2017, 40, 1681-1686.	0.5	2
84	Profile-driven Features for Offline Quality Prediction in Batch Processes. Computer Aided Chemical Engineering, 2017, 40, 1501-1506.	0.5	1
85	An extended comparison study of large scale datadriven prediction methods based on variable selection, latent variables, penalized regression and machine learning. Computer Aided Chemical Engineering, 2016, 38, 1629-1634.	0.5	3
86	Managing Uncertainty Information for Improved Data-Driven Modelling. Computer Aided Chemical Engineering, 2016, 38, 1575-1580.	0.5	0
87	How Can SMEs Benefit from Big Data? Challenges and a Path Forward. Quality and Reliability Engineering International, 2016, 32, 2151-2164.	2.3	134
88	Parameter selection guidelines for adaptive PCAâ€based control charts. Journal of Chemometrics, 2016, 30, 163-176.	1.3	16
89	A systematic comparison of PCAâ€based Statistical Process Monitoring methods for highâ€dimensional, timeâ€dependent Processes. AICHE Journal, 2016, 62, 1478-1493.	3.6	86
90	Modelling the ageing process: A novel strategy to analyze the wine evolution towards the expected features. Chemometrics and Intelligent Laboratory Systems, 2016, 154, 176-184.	3.5	14

#	Article	IF	CITATIONS
91	A Systematic Methodology for Comparing Batch Process Monitoring Methods: Part l—Assessing Detection Strength. Industrial & Engineering Chemistry Research, 2016, 55, 5342-5358.	3.7	20
92	Multiscale and megavariate monitoring of the process networked structure: M2NET. Journal of Chemometrics, 2015, 29, 309-322.	1.3	18
93	The ENBISâ€14 Quality and Reliability Engineering International Special Issue. Quality and Reliability Engineering International, 2015, 31, 1101-1102.	2.3	0
94	Challenges in the Specification and Integration of Measurement Uncertainty in the Development of Data-Driven Models for the Chemical Processing Industry. Industrial & Engineering Chemistry Research, 2015, 54, 9159-9177.	3.7	20
95	An integrated multiscale and multivariate image analysis framework for process monitoring of colour random textures: MSMIA. Chemometrics and Intelligent Laboratory Systems, 2015, 142, 36-48.	3.5	7
96	Chemometric analysis of the volatile fraction evolution of Portuguese beer under shelf storage conditions. Chemometrics and Intelligent Laboratory Systems, 2015, 142, 131-142.	3.5	17
97	Wide-range and accurate modeling of linear alkylbenzene sulfonate (LAS) adsorption/desorption on agricultural soil. Chemosphere, 2015, 138, 148-155.	8.2	5
98	On-line process monitoring using local measures of association: Part I — Detection performance. Chemometrics and Intelligent Laboratory Systems, 2015, 142, 255-264.	3.5	21
99	On-line process monitoring using local measures of association. Part II: Design issues and fault diagnosis. Chemometrics and Intelligent Laboratory Systems, 2015, 142, 265-275.	3.5	21
100	Evaluation of Linear Alkylbenzene Sulfonate (LAS) behaviour in agricultural soil through laboratory continuous studies. Chemosphere, 2015, 131, 1-8.	8.2	13
101	Optimal design of experiments applied to headspace solid phase microextraction for the quantification of vicinal diketones in beer through gas chromatography-mass spectrometric detection. Analytica Chimica Acta, 2015, 887, 101-110.	5.4	23
102	Identifying Strong Statistical Bias in the Local Structure of Metabolic Networks - The Metabolic Network of Saccharomyces Cerevisiae as a Test Case. , 2015, , .		0
103	An Extended Comparative Study of Two- and Three-Way Methodologies for the On-line Monitoring of Batch Processes. Computer Aided Chemical Engineering, 2014, 33, 517-522.	0.5	1
104	A Comparison Study of Singleâ€Scale and Multiscale Approaches for Dataâ€Driven and Modelâ€Based Online Denoising. Quality and Reliability Engineering International, 2014, 30, 935-950.	2.3	10
105	Sensitivity enhancing transformations for monitoring the process correlation structure. Journal of Process Control, 2014, 24, 905-915.	3.3	26
106	Non-causal data-driven monitoring of the process correlation structure: A comparison study with new methods. Computers and Chemical Engineering, 2014, 71, 307-322.	3.8	12
107	Sensitivity Enhancing Transformations for Large-Scale Process Monitoring. Computer Aided Chemical Engineering, 2014, 33, 643-648.	0.5	0
108	Networkâ€induced supervised learning: Networkâ€induced classification (<scp>Nlâ€C</scp>) and networkâ€induced regression (<scp>Nlâ€R</scp>). AICHE Journal, 2013, 59, 1570-1587.	3.6	18

#	Article	IF	CITATIONS
109	An experimental design methodology to evaluate the importance of different parameters on flocculation by polyelectrolytes. Powder Technology, 2013, 238, 2-13.	4.2	12
110	Defining the structure of DPCA models and its impact on process monitoring and prediction activities. Chemometrics and Intelligent Laboratory Systems, 2013, 125, 74-86.	3.5	71
111	Fault detection in the Tennessee Eastman benchmark process using dynamic principal components analysis based on decorrelated residuals (DPCA-DR). Chemometrics and Intelligent Laboratory Systems, 2013, 125, 101-108.	3.5	128
112	Advantage of Using Decorrelated Residuals in Dynamic Principal Component Analysis for Monitoring Large-Scale Systems. Industrial & Engineering Chemistry Research, 2013, 52, 13685-13698.	3.7	57
113	Applications of a new empirical modelling framework for balancing model interpretation and prediction accuracy through the incorporation of clusters of functionally related variables. Chemometrics and Intelligent Laboratory Systems, 2013, 127, 7-16.	3.5	12
114	A Signal Processing Approach for Fault Detection Problem. Computer Aided Chemical Engineering, 2012, 30, 857-861.	0.5	2
115	Prediction of Profiles in the Process Industries. Industrial & Engineering Chemistry Research, 2012, 51, 4254-4266.	3.7	15
116	A new data driven index for control performance monitoring. Computer Aided Chemical Engineering, 2012, 30, 852-856.	0.5	0
117	Development of semitransparent wood-polymer composites. Journal of Vinyl and Additive Technology, 2012, 18, 95-104.	3.4	2
118	Development of Generalized Platforms for the Analysis of Complex Datasets. Quality and Reliability Engineering International, 2012, 28, 508-523.	2.3	0
119	A large-scale statistical process control approach for the monitoring of electronic devices assemblage. Computers and Chemical Engineering, 2012, 39, 163-169.	3.8	6
120	Evaluation of the presence of major anionic surfactants in marine sediments. Marine Pollution Bulletin, 2012, 64, 587-594.	5.0	16
121	Statistical Process Control of Multivariate Systems with Autocorrelation. Computer Aided Chemical Engineering, 2011, , 497-501.	0.5	6
122	Development of a fast and reliable method for long- and short-term wine age prediction. Talanta, 2011, 86, 293-304.	5.5	20
123	Madeira wine ageing prediction based on different analytical techniques: UV–vis, GC-MS, HPLC-DAD. Chemometrics and Intelligent Laboratory Systems, 2011, 105, 43-55.	3.5	55
124	Environmental monitoring study of linear alkylbenzene sulfonates and insoluble soap in Spanish sewage sludge samples. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2011, 46, 617-626.	1.7	1
125	"Mega―variate statistical process control in electronic devices assembling. Computer Aided Chemical Engineering, 2010, 28, 523-528.	0.5	0
126	Multivariate Statistical Monitoring of Wine Ageing Processes. Computer Aided Chemical Engineering, 2010, , 247-252.	0.5	1

#	Article	IF	CITATIONS
127	Analysis and assessment of Madeira wine ageing over an extended time period through GC–MS and chemometric analysis. Analytica Chimica Acta, 2010, 660, 8-21.	5.4	49
128	Aroma ageing trends in GC/MS profiles of liqueur wines. Analytica Chimica Acta, 2010, 659, 93-101.	5.4	33
129	Image-based classification of paper surface quality using wavelet texture analysis. Computers and Chemical Engineering, 2010, 34, 2014-2021.	3.8	12
130	Statistical monitoring of control loops performance: an improved historicalâ€data benchmark index. Quality and Reliability Engineering International, 2010, 26, 831-844.	2.3	4
131	Analysis and Classification of the Paper Surface. Industrial & Engineering Chemistry Research, 2010, 49, 2493-2502.	3.7	12
132	A multiscale empirical modeling framework for system identification. Journal of Process Control, 2009, 19, 1546-1557.	3.3	29
133	Wavelet texture analysis of on-line acquired images for paper formation assessment and monitoring. Chemometrics and Intelligent Laboratory Systems, 2009, 95, 129-137.	3.5	41
134	Quality Control of Food Products using Image Analysis and Multivariate Statistical Tools. Industrial & Engineering Chemistry Research, 2009, 48, 988-998.	3.7	31
135	Using Wavelet Texture Analysis in Image-Based Classification and Statistical Process Control of Paper Surface Quality. Computer Aided Chemical Engineering, 2009, 27, 1209-1214.	0.5	1
136	Denoising and Signal-to-Noise Ratio Enhancement: Wavelet Transform and Fourier Transform. , 2009, , 25-55.		18
137	Multiscale statistical process control using wavelet packets. AICHE Journal, 2008, 54, 2366-2378.	3.6	42
138	Generalized Multiresolution Decomposition Frameworks for the Analysis of Industrial Data with Uncertainty and Missing Values. Industrial & Engineering Chemistry Research, 2006, 45, 6330-6338.	3.7	18
139	Multiscale analysis and monitoring of paper surface. Computer Aided Chemical Engineering, 2006, 21, 1173-1178.	0.5	2
140	Multiscale Statistical Process Control of Paper Surface Profiles. Quality Technology and Quantitative Management, 2006, 3, 263-281.	1.9	26
141	Heteroscedastic latent variable modelling with applications to multivariate statistical process control. Chemometrics and Intelligent Laboratory Systems, 2006, 80, 57-66.	3.5	22
142	Multiscale statistical process control with multiresolution data. AICHE Journal, 2006, 52, 2107-2119.	3.6	41
143	Multiscale SPC in the presence of multiresolution data. Computer Aided Chemical Engineering, 2006, , 1359-1364.	0.5	1
144	Integrating data uncertainty in multiresolution analysis. Computer Aided Chemical Engineering, 2005, , 1501-1506.	0.5	1

#	Article	IF	CITATIONS
145	Paper superficial waviness: Conception and implementation of an industrial statistical measurement system. Analytica Chimica Acta, 2005, 544, 135-142.	5.4	13
146	Integration of data uncertainty in linear regression and process optimization. AICHE Journal, 2005, 51, 3007-3019.	3.6	29
147	Different Modeling Approaches for a Heterogeneous Liquidâ^'Liquid Reaction Process. Industrial & Engineering Chemistry Research, 2005, 44, 9414-9421.	3.7	8
148	A comparative study of linear regression methods in noisy environments. Journal of Chemometrics, 2004, 18, 526-536.	1.3	32
149	Accounting for measurement uncertainties in industrial data analysis. Computer Aided Chemical Engineering, 2004, , 751-756.	0.5	0
150	Multiscale latent variable analysis of industrial data. Computer Aided Chemical Engineering, 2003, 15, 1340-1345.	0.5	1