
Peter A Allison

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4788025/publications.pdf Version: 2024-02-01

PETER & ALLISON

#	Article	IF	CITATIONS
1	Spatial sampling heterogeneity limits the detectability of deep time latitudinal biodiversity gradients. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20202762.	2.6	12
2	Reconstructing the morphologies and hydrodynamics of ancient rivers from source to sink: Cretaceous Western Interior Basin, Utah, USA. Sedimentology, 2021, 68, 2854-2886.	3.1	14
3	Prediction of shoreline–shelf depositional process regime guided by palaeotidal modelling. Earth-Science Reviews, 2021, 223, 103827.	9.1	4
4	Asteroid impact, not volcanism, caused the end-Cretaceous dinosaur extinction. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17084-17093.	7.1	116
5	Predicting sediment discharges and erosion rates in deep time—examples from the late Cretaceous North American continent. Basin Research, 2020, 32, 1547-1573.	2.7	12
6	Aragonite bias exhibits systematic spatial variation in the Late Cretaceous Western Interior Seaway, North America. Paleobiology, 2019, 45, 571-597.	2.0	7
7	Coupling of palaeontological and neontological reef coral data improves forecasts of biodiversity responses under global climatic change. Royal Society Open Science, 2019, 6, 182111.	2.4	25
8	Ecological niche modelling does not support climatically-driven dinosaur diversity decline before the Cretaceous/Paleogene mass extinction. Nature Communications, 2019, 10, 1091.	12.8	60
9	Mixed Process, Humid-tropical, Shoreline–shelf Deposition and Preservation: Middle Miocene–modern Baram Delta Province, Northwest Borneo. Journal of Sedimentary Research, 2018, 88, 399-430.	1.6	17
10	Controls on tidal sedimentation and preservation: Insights from numerical tidal modelling in the Late Oligocene–Miocene South China Sea, Southeast Asia. Sedimentology, 2018, 65, 2468-2505.	3.1	18
11	Tidal dynamics and mangrove carbon sequestration during the Oligo–Miocene in the South China Sea. Nature Communications, 2017, 8, 15698.	12.8	50
12	Coupled â€~stormâ€flood' depositional model: Application to the Miocene–Modern Baram Delta Province, northâ€west Borneo. Sedimentology, 2017, 64, 1203-1235.	3.1	53
13	Sedimentology and stratigraphic architecture of a Miocene retrogradational, tide-dominated delta system: Balingian Province, offshore Sarawak, Malaysia. Geological Society Special Publication, 2017, 444, 215-250.	1.3	7
14	Application of the adjoint approach to optimise the initial conditions of a turbidity current with the AdjointTurbidity 1.0 model. Geoscientific Model Development, 2017, 10, 1051-1068.	3.6	4
15	Not all aragonitic molluscs are missing: taphonomy and significance of a unique shelly lagerstäte from the Jurassic of SW Britain. Lethaia, 2015, 48, 540-548.	1.4	16
16	An improved quantitative measure of the tendency for volcanic ash plumes to form in water: implications for the deposition of marine ash beds. Journal of Volcanology and Geothermal Research, 2015, 290, 114-124.	2.1	10
17	Assessment of spurious mixing in adaptive mesh simulations of the two-dimensional lock-exchange. Ocean Modelling, 2014, 73, 30-44.	2.4	15
18	Sedimentology and stratigraphic development of the upper Nyalau Formation (Early Miocene), Sarawak, Malaysia: A mixed wave- and tide-influenced coastal system. Journal of Asian Earth Sciences, 2013, 76, 301-311.	2.3	46

PETER A ALLISON

#	Article	IF	CITATIONS
19	The impact of mesh adaptivity on the gravity current front speed in a two-dimensional lock-exchange. Ocean Modelling, 2011, 38, 1-21.	2.4	37
20	The independent set perturbation adjoint method: A new method of differentiating meshâ€based fluids models. International Journal for Numerical Methods in Fluids, 2011, 66, 976-999.	1.6	8
21	Tidal circulation in an ancient epicontinental sea: The Early Jurassic Laurasian Seaway. Geology, 2011, 39, 207-210.	4.4	22
22	Tidal Modeling of an Ancient Tide-Dominated Seaway, Part 1: Model Validation and Application to Global Early Cretaceous (Aptian) Tides. Journal of Sedimentary Research, 2010, 80, 393-410.	1.6	28
23	Numerical modelling of tsunami propagation with implications for sedimentation in ancient epicontinental seas: The Lower Jurassic Laurasian Seaway. Sedimentary Geology, 2010, 228, 81-97.	2.1	8
24	Modelling tidal current-induced bed shear stress and palaeocirculation in an epicontinental seaway: the Bohemian Cretaceous Basin, Central Europe. Sedimentology, 2010, 57, 359-388.	3.1	45
25	Tidal Modeling of an Ancient Tide-Dominated Seaway, Part 2: The Aptian Lower Greensand Seaway of Northwest Europe. Journal of Sedimentary Research, 2010, 80, 411-439.	1.6	17
26	Taphonomy: Bias and Process Through Time. Topics in Geobiology, 2010, , 1-17.	0.5	13
27	Comparative Taphonomy and Sedimentology of Small-Scale Mixed Carbonate/Siliciclastic Cycles: Synopsis of Phanerozoic Examples. Topics in Geobiology, 2010, , 107-198.	0.5	3
28	Reducedâ€order modelling of an adaptive mesh ocean model. International Journal for Numerical Methods in Fluids, 2009, 59, 827-851.	1.6	47
29	A POD reducedâ€order 4Dâ€Var adaptive mesh ocean modelling approach. International Journal for Numerical Methods in Fluids, 2009, 60, 709-732.	1.6	45
30	A POD reduced order unstructured mesh ocean modelling method for moderate Reynolds number flows. Ocean Modelling, 2009, 28, 127-136.	2.4	57
31	Sequence stratigraphy, cyclic facies, and lagerstÃŧten in the Middle Cambrian Wheeler and Marjum Formations, Great Basin, Utah. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 277, 9-33.	2.3	54
32	Geophysical and geological signatures of relative sea level change in the upper Wheeler Formation, Drum Mountains, West-Central Utah: A perspective into exceptional preservation of fossils. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 277, 34-56.	2.3	33
33	A new computational framework for multiâ€scale ocean modelling based on adapting unstructured meshes. International Journal for Numerical Methods in Fluids, 2008, 56, 1003-1015.	1.6	139
34	A systematic approach to unstructured mesh generation for ocean modelling using GMT and Terreno. Computers and Geosciences, 2008, 34, 1721-1731.	4.2	30
35	Biotic–sediment interactions. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 270, 217-219.	2.3	0
36	Methane seeps on an Early Jurassic dysoxic seafloor. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 270, 230-238.	2.3	22

PETER A ALLISON

#	Article	IF	CITATIONS
37	The occurrence and preservation of ammonites in the Blue Lias Formation (lower Jurassic) of Devon and Dorset, England and their palaeoecological, sedimentological and diagenetic significance. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 270, 258-272.	2.3	25
38	Exceptional Preservation Within Pleistocene Lacustrine Sediments of Shiobara, Japan. Palaios, 2008, 23, 260-266.	1.3	21
39	Numerical Modeling of Tides in the Late Pennsylvanian Midcontinent Seaway of North America with Implications for Hydrography and Sedimentation. Journal of Sedimentary Research, 2007, 77, 843-865.	1.6	39
40	CIRCULATION IN LARGE ANCIENT EPICONTINENTAL SEAS: WHAT WAS DIFFERENT AND WHY?. Palaios, 2006, 21, 513-515.	1.3	36
41	Discussion on large sea, small tides: the Late Carboniferous seaway of NW Europe. Journal of the Geological Society, 2006, 163, 893-895.	2.1	1
42	SEDIMENTOLOGY, TAPHONOMY, AND PALEOECOLOGY OF METER-SCALE CYCLES FROM THE UPPER ORDOVICIAN OF ONTARIO. Palaios, 2006, 21, 530-547.	1.3	24
43	Modelling ancient tides: the Upper Carboniferous epi-continental seaway of Northwest Europe. Sedimentology, 2005, 52, 715-735.	3.1	58
44	Switching off the carbonate factory: A-tidality, stratification and brackish wedges in epeiric seas. Sedimentary Geology, 2005, 179, 175-184.	2.1	33
45	Large sea, small tides: the Late Carboniferous seaway of NW Europe. Journal of the Geological Society, 2005, 162, 417-420.	2.1	47
46	Biostratigraphy and environmental changes across the Cenomanian–Turonian boundary, southern Mexico. Journal of South American Earth Sciences, 2001, 14, 237-255.	1.4	18
47	The Walcott-Rust Quarry: Middle Ordovician trilobite Konservat-Lagerstäten. Journal of Paleontology, 1999, 73, 288-305.	0.8	30
48	Bryozoan carbonates through time and space. Geology, 1998, 26, 459.	4.4	86
49	Stratification and Oxygen Isotopes in the Paleozoic: Is Paleotermometry in Hot Water?. The Paleontological Society Papers, 1998, 4, 244-254.	0.6	6
50	Marine Palaeoenvironmental Analysis from Fossils. Palaios, 1996, 11, 90.	1.3	15
51	Palaeo-oxygenation: effects and recognition. Geological Society Special Publication, 1995, 83, 97-112.	1.3	34
52	In situ benthos and paleo-oxygenation in the Middle Cambrian Burgess Shale, British Columbia, Canada. Geology, 1995, 23, 1079.	4.4	66
53	Early Diagenetic Mineralization and Fossil Preservation in Modern Carbonate Concretions. Palaios, 1994, 9, 561.	1.3	55
54	Exceptional fossil record: Distribution of soft-tissue preservation through the Phanerozoic: Comment and Reply. Geology, 1994, 22, 183.	4.4	12

PETER A ALLISON

#	Article	IF	CITATIONS
55	Burgess Shale biotas: burrowed away?. Lethaia, 1993, 26, 184-185.	1.4	14
56	Paleolatitudinal sampling bias, Phanerozoic species diversity, and the end-Permian extinction. Geology, 1993, 21, 65.	4.4	86
57	Exceptional fossil record: Distribution of soft-tissue preservation through the Phanerozoic. Geology, 1993, 21, 527.	4.4	168
58	Taphonomy Has Come of Age!. Palaios, 1991, 6, 345.	1.3	2
59	Deep-water taphonomy of vertebrate carcasses: a whale skeleton in the bathyal Santa Catalina Basin. Paleobiology, 1991, 17, 78-89.	2.0	128
60	Taphonomy of Nonmineralized Tissues. Topics in Geobiology, 1991, , 25-70.	0.5	66
61	Phosphatized softâ€bodied squids from the Jurassic Oxford Clay. Lethaia, 1988, 21, 403-410.	1.4	74
62	<i>Konservat-Lagerstäten:</i> cause and classification. Paleobiology, 1988, 14, 331-344.	2.0	249
63	The role of anoxia in the decay and mineralization of proteinaceous macro-fossils. Paleobiology, 1988, 14, 139-154.	2.0	258
64	A new cephalopod with soft parts from the Upper Carboniferous Francis Creek Shale of Illinois, USA. Lethaia, 1987, 20, 117-121.	1.4	3
65	Soft-bodied animals in the fossil record: The role of decay in fragmentation during transport. Geology, 1986, 14, 979.	4.4	111