

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4788013/publications.pdf Version: 2024-02-01

Νιλλιι

#	Article	IF	CITATIONS
1	Mechanical damages and packaging methods along the fresh fruit supply chain: A review. Critical Reviews in Food Science and Nutrition, 2023, 63, 10283-10302.	10.3	5
2	Non-Destructive Detection of Damaged Strawberries after Impact Based on Analyzing Volatile Organic Compounds. Sensors, 2022, 22, 427.	3.8	7
3	Transcriptomic Analysis of Root Restriction Effects on the Primary Metabolites during Grape Berry Development and Ripening. Genes, 2022, 13, 281.	2.4	4
4	Grafting Hollow Covalent Organic Framework Nanoparticles with Thermal-Responsive Polymers for the Controlled Release of Preservatives. ACS Applied Materials & Interfaces, 2022, 14, 22982-22988.	8.0	9
5	Polycaprolactone/polyvinyl pyrrolidone nanofibers developed by solution blow spinning for encapsulation of chlorogenic acid. Food Quality and Safety, 2022, 6, .	1.8	10
6	Packaging Design to Protect Hongmeiren Orange Fruit from Mechanical Damage during Simulated and Road Transportation. Horticulturae, 2022, 8, 258.	2.8	10
7	Chitosan/PCL nanofibrous films developed by SBS to encapsulate thymol/HPβCD inclusion complexes for fruit packaging. Carbohydrate Polymers, 2022, 286, 119267.	10.2	36
8	Solution blow spinning of multilayer polycaprolactone/curcumin-loaded gelatin/polycaprolactone nanofilm for slow release and bacterial inhibition. Food Hydrocolloids for Health, 2022, 2, 100062.	3.9	10
9	Chlorogenic acid-loaded sandwich-structured nanofibrous film developed by solution blow spinning: Characterization, release behavior and antimicrobial activity. Food Packaging and Shelf Life, 2022, 32, 100854.	7.5	12
10	Facile microfluidic fabrication and characterization of ethyl cellulose/PVP films with neatly arranged fibers. Carbohydrate Polymers, 2022, 292, 119702.	10.2	17
11	Characterization of glycosylated gelatin/pullulan nanofibers fabricated by multi-fluid mixing solution blow spinning. International Journal of Biological Macromolecules, 2022, 214, 512-521.	7.5	8
12	Development of a thermally conductive and antimicrobial nanofibrous mat for the cold chain packaging of fruits and vegetables. Materials and Design, 2022, 221, 110931.	7.0	7
13	Nondestructive measurement of pectin polysaccharides using hyperspectral imaging in mulberry fruit. Food Chemistry, 2021, 334, 127614.	8.2	40
14	Biosynthetic labeling with 3-O-propargylcaffeyl alcohol reveals in vivo cell-specific patterned lignification in loquat fruits during development and postharvest storage. Horticulture Research, 2021, 8, 61.	6.3	11
15	Modelling multiple impacts on the outâ€ofâ€plane cushioning properties of honeycomb paperboard. Packaging Technology and Science, 2021, 34, 541-556.	2.8	3
16	Efficient antibacterial polyphosphazene material with potential to prominent wound healing. Materials Express, 2021, 11, 947-958.	0.5	2
17	Melatonin treatment maintains quality and delays lignification in loquat fruit during cold storage. Scientia Horticulturae, 2021, 284, 110126.	3.6	37
18	Preparation of Î ² -lactoglobulin/gum arabic complex nanoparticles for encapsulation and controlled release of EGCG in simulated gastrointestinal digestion model. Food Chemistry, 2021, 354, 129516.	8.2	69

#	Article	IF	CITATIONS
19	Volatile Profile and Biosynthesis of Post-harvest Apples are Affected by the Mechanical Damage. Journal of Agricultural and Food Chemistry, 2021, 69, 9716-9724.	5.2	15
20	Application of solution blow spinning to rapidly fabricate natamycin-loaded gelatin/zein/polyurethane antimicrobial nanofibers for food packaging. Food Packaging and Shelf Life, 2021, 29, 100721.	7.5	34
21	Application of Solution Blow Spinning for Rapid Fabrication of Gelatin/Nylon 66 Nanofibrous Film. Foods, 2021, 10, 2339.	4.3	15
22	Application of electronic nose and GC–MS for detection of strawberries with vibrational damage. Food Quality and Safety, 2020, 4, 181-192.	1.8	8
23	Natamycin-loaded zein nanoparticles stabilized by carboxymethyl chitosan: Evaluation of colloidal/chemical performance and application in postharvest treatments. Food Hydrocolloids, 2020, 106, 105871.	10.7	50
24	Fabrication of lysozyme/κ-carrageenan complex nanoparticles as a novel carrier to enhance the stability and in vitro release of curcumin. International Journal of Biological Macromolecules, 2020, 146, 444-452.	7.5	35
25	Hybrid Label-Free Molecular Microscopies for Simultaneous Visualization of Changes in Cell Wall Polysaccharides of Peach at Single- and Multiple-Cell Levels during Postharvest Storage. Cells, 2020, 9, 761.	4.1	12
26	Rapid and Non-Destructive Detection of Compression Damage of Yellow Peach Using an Electronic Nose and Chemometrics. Sensors, 2020, 20, 1866.	3.8	34
27	Effects of cushioning materials and temperature on quality damage of ripe peaches according to the vibration test. Food Packaging and Shelf Life, 2020, 25, 100518.	7.5	28
28	Morphology and cell wall composition changes in lignified cells from loquat fruit during postharvest storage. Postharvest Biology and Technology, 2019, 157, 110975.	6.0	27
29	Label-free visualization of lignin deposition in loquats using complementary stimulated and spontaneous Raman microscopy. Horticulture Research, 2019, 6, 72.	6.3	16
30	Comparing the Potential of Near- and Mid-Infrared Spectroscopy in Determining the Freshness of Strawberry Powder from Freshly Available and Stored Strawberry. Journal of Analytical Methods in Chemistry, 2019, 2019, 1-9.	1.6	2
31	Feasibility of Laser-Induced Breakdown Spectroscopy and Hyperspectral Imaging for Rapid Detection of Thiophanate-Methyl Residue on Mulberry Fruit. International Journal of Molecular Sciences, 2019, 20, 2017.	4.1	20
32	Encapsulation of allopurinol by glucose cross-linked gelatin/zein nanofibers: Characterization and release behavior. Food Hydrocolloids, 2019, 94, 574-584.	10.7	61
33	A novel method to extract important features from laser induced breakdown spectroscopy data: application to determine heavy metals in mulberries. Journal of Analytical Atomic Spectrometry, 2019, 34, 460-468.	3.0	12
34	Loquat Bruise Detection Using Optical Coherence Tomography Based on Microstructural Parameters. Food Analytical Methods, 2018, 11, 2692-2698.	2.6	18
35	Label-free visualization of fruit lignification: Raman molecular imaging of loquat lignified cells. Plant Methods, 2018, 14, 58.	4.3	30
36	Improving bioconversion of eugenol to coniferyl alcohol by in situ eliminating harmful H2O2. Bioresource Technology, 2018, 267, 578-583.	9.6	13

#	Article	IF	CITATIONS
37	E-Nose and GC-MS Reveal a Difference in the Volatile Profiles of White- and Red-Fleshed Peach Fruit. Sensors, 2018, 18, 765.	3.8	34
38	Potential of Visible and Near-Infrared Hyperspectral Imaging for Detection of Diaphania pyloalis Larvae and Damage on Mulberry Leaves. Sensors, 2018, 18, 2077.	3.8	10
39	Rapid and Non-Destructive Detection of Decay in Peach Fruit at the Cold Environment Using a Self-Developed Handheld Electronic-Nose System. Food Analytical Methods, 2018, 11, 2990-3004.	2.6	22
40	Feasibility Study on Quantitative Pixel-Level Visualization of Internal Quality at Different Cross Sections Inside Postharvest Loquat Fruit. Food Analytical Methods, 2017, 10, 287-297.	2.6	10
41	Transcriptomic Analyses of Ascorbic Acid and Carotenoid Metabolites Influenced by Root Restriction during Grape Berry Development and Ripening. Journal of Agricultural and Food Chemistry, 2017, 65, 2008-2016.	5.2	9
42	Comparison of different CCD detectors and chemometrics for predicting total anthocyanin content and antioxidant activity of mulberry fruit using visible and near infrared hyperspectral imaging technique. Food Chemistry, 2017, 224, 1-10.	8.2	71
43	Quantitative visualization of pectin distribution maps of peach fruits. Scientific Reports, 2017, 7, 9275.	3.3	15
44	A primary study on forecasting the days before decay of peach fruit using near-infrared spectroscopy and electronic nose techniques. Postharvest Biology and Technology, 2017, 133, 104-112.	6.0	64
45	Comparative Transcriptomic Analysis of Grape Berry in Response to Root Restriction during Developmental Stages. Molecules, 2016, 21, 1431.	3.8	21
46	Study on the quantitative measurement of firmness distribution maps at the pixel level inside peach pulp. Computers and Electronics in Agriculture, 2016, 130, 48-56.	7.7	24
47	Non-invasive measurement of soluble solid content and pH in Kyoho grapes using a computer vision technique. Analytical Methods, 2016, 8, 3242-3248.	2.7	15
48	Application of Electronic Nose with Multivariate Analysis and Sensor Selection for Botanical Origin Identification and Quality Determination of Honey. Food and Bioprocess Technology, 2015, 8, 359-370.	4.7	76
49	Nondestructive Spectroscopic and Imaging Techniques for Quality Evaluation and Assessment of Fish and Fish Products. Critical Reviews in Food Science and Nutrition, 2015, 55, 864-886.	10.3	61
50	Ultrasound-assisted extraction of phenolics from wine lees: Modeling, optimization and stability of extracts during storage. Ultrasonics Sonochemistry, 2014, 21, 706-715.	8.2	170
51	Comparison of Infrared Spectroscopy and Nuclear Magnetic Resonance Techniques in Tandem with Multivariable Selection for Rapid Determination of ω-3 Polyunsaturated Fatty Acids in Fish Oil. Food and Bioprocess Technology, 2014, 7, 1555-1569.	4.7	41
52	Determination of Branched-Amino Acid Content in Fermented Cordyceps sinensis Mycelium by Using FT-NIR Spectroscopy Technique. Food and Bioprocess Technology, 2014, 7, 184-190.	4.7	41
53	Rapid and real-time prediction of lactic acid bacteria (LAB) in farmed salmon flesh using near-infrared (NIR) hyperspectral imaging combined with chemometric analysis. Food Research International, 2014, 62, 476-483.	6.2	70
54	Rapid and non-destructive determination of drip loss and pH distribution in farmed Atlantic salmon (Salmo salar) fillets using visible and near-infrared (Vis–NIR) hyperspectral imaging. Food Chemistry, 2014, 156, 394-401.	8.2	90

#	Article	IF	CITATIONS
55	Novel non-invasive distribution measurement of texture profile analysis (TPA) in salmon fillet by using visible and near infrared hyperspectral imaging. Food Chemistry, 2014, 145, 417-426.	8.2	92
56	Potential of hyperspectral imaging combined with chemometric analysis for assessing and visualising tenderness distribution in raw farmed salmon fillets. Journal of Food Engineering, 2014, 126, 156-164.	5.2	91
57	Potential of spectroscopic techniques and chemometric analysis for rapid measurement of docosahexaenoic acid and eicosapentaenoic acid in algal oil. Food Chemistry, 2014, 158, 93-100.	8.2	36
58	Potential of hyperspectral imaging and multivariate analysis for rapid and non-invasive detection of gelatin adulteration in prawn. Journal of Food Engineering, 2013, 119, 680-686.	5.2	99
59	Application of Time Series Hyperspectral Imaging (TS-HSI) for Determining Water Distribution Within Beef and Spectral Kinetic Analysis During Dehydration. Food and Bioprocess Technology, 2013, 6, 2943-2958.	4.7	94
60	Application of visible and near infrared hyperspectral imaging for non-invasively measuring distribution of water-holding capacity in salmon flesh. Talanta, 2013, 116, 266-276.	5.5	101
61	Quantitative and predictive study of the evolution of wine quality parameters during high hydrostatic pressure processing. Innovative Food Science and Emerging Technologies, 2013, 20, 81-90.	5.6	17
62	Colour measurements by computer vision for food quality control – A review. Trends in Food Science and Technology, 2013, 29, 5-20.	15.1	449
63	Potential of time series-hyperspectral imaging (TS-HSI) for non-invasive determination of microbial spoilage of salmon flesh. Talanta, 2013, 111, 39-46.	5.5	194
64	Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: A review — Part II: Applications. Innovative Food Science and Emerging Technologies, 2013, 19, 15-28.	5.6	263
65	Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: A review — Part I: Fundamentals. Innovative Food Science and Emerging Technologies, 2013, 19, 1-14.	5.6	392
66	Non-destructive and rapid analysis of moisture distribution in farmed Atlantic salmon (Salmo salar) fillets using visible and near-infrared hyperspectral imaging. Innovative Food Science and Emerging Technologies, 2013, 18, 237-245.	5.6	116
67	Feasibility of Infrared and Raman Spectroscopies for Identification of Juvenile Black Seabream (Sparus) Tj ETQq1 12429-12435.	1 0.78431 5.2	4 rgBT /Ove 23
68	Potential of Visible and Near Infrared Spectroscopy and Pattern Recognition for Rapid Quantification of Notoginseng Powder with Adulterants. Sensors, 2013, 13, 13820-13834.	3.8	28
69	Spectral Multivariable Selection and Calibration in Visible-Shortwave Near-Infrared Spectroscopy for Non-Destructive Protein Assessment of <i>Spirulina</i> Microalga Powder. International Journal of Food Properties, 2013, 16, 1002-1015.	3.0	11
70	Hyperspectral Imaging Technology: A Nondestructive Tool for Food Quality and Safety Evaluation and Inspection. Food Engineering Series, 2013, , 581-606.	0.7	7
71	Application of long-wave near infrared hyperspectral imaging for measurement of color distribution in salmon fillet. Innovative Food Science and Emerging Technologies, 2012, 16, 361-372.	5.6	159
72	Semi-supervised Machine Learning Algorithm in Near Infrared Spectral Calibration: A Case Study to		2

Determine Cetane Number and Total Aromatics of Diesel Fuels. , 2012, , .

#	Article	IF	CITATIONS
73	Rapid prediction of moisture content of dehydrated prawns using online hyperspectral imaging system. Analytica Chimica Acta, 2012, 726, 57-66.	5.4	161
74	Application of near infrared spectroscopy for the rapid determination of antioxidant activity of bamboo leaf extract. Food Chemistry, 2012, 135, 2147-2156.	8.2	112
75	Determination of Calcium Content in Powdered Milk Using Near and Mid-Infrared Spectroscopy with Variable Selection and Chemometrics. Food and Bioprocess Technology, 2012, 5, 1402-1410.	4.7	89
76	Raisin Quality Classification Using Least Squares Support Vector Machine (LSSVM) Based on Combined Color and Texture Features. Food and Bioprocess Technology, 2012, 5, 1552-1563.	4.7	24
77	Fast determination of boiling time of yardlong bean using visible and near infrared spectroscopy and chemometrics. Journal of Food Engineering, 2012, 109, 155-161.	5.2	7
78	Application of hybrid image features for fast and non-invasive classification of raisin. Journal of Food Engineering, 2012, 109, 531-537.	5.2	13
79	Uninformative variable elimination for improvement of successive projections algorithm on spectral multivariable selection with different calibration algorithms for the rapid and non-destructive determination of protein content in dried laver. Analytical Methods, 2011, 3, 1790.	2.7	60
80	Nondestructive Differentiation of Panax Species Using Visible and Shortwave Near-Infrared Spectroscopy. Food and Bioprocess Technology, 2011, 4, 753-761.	4.7	41
81	Rapid Discrimination of Fish Feeds Brands Based on Visible and Short-Wave Near-Infrared Spectroscopy. Food and Bioprocess Technology, 2011, 4, 597-602.	4.7	22
82	Internal quality determination of fruit with bumpy surface using visible and near infrared spectroscopy and chemometrics: A case study with mulberry fruit. Biosystems Engineering, 2011, 109, 377-384.	4.3	23
83	Application of visible and near infrared spectroscopy for rapid and non-invasive quantification of common adulterants in Spirulina powder. Journal of Food Engineering, 2011, 102, 278-286.	5.2	54
84	Application of a hybrid variable selection method for the classification of rapeseed oils based on 1H NMR spectral analysis. European Food Research and Technology, 2010, 230, 981-988.	3.3	13
85	Soluble solids content and pH prediction and varieties discrimination of grapes based on visible–near infrared spectroscopy. Computers and Electronics in Agriculture, 2010, 71, S15-S18.	7.7	82
86	Hybrid variable selection in visible and near-infrared spectral analysis for non-invasive quality determination of grape juice. Analytica Chimica Acta, 2010, 659, 229-237.	5.4	163
87	CLASSIFYING THE SPECIES OF EXOPALAEMON BY USING VISIBLE AND NEAR INFRARED SPECTRA WITH UNINFORMATIVE VARIABLE ELIMINATION AND SUCCESSIVE PROJECTIONS ALGORITHM. Hongwai Yu Haomibo Xuebao/Journal of Infrared and Millimeter Waves, 2010, 28, 423-427.	0.2	12
88	Uninformation Variable Elimination and Successive Projections Algorithm in Mid-Infrared Spectral Wavenumber Selection. , 2009, , .		2
89	Use of In-Situ Visible and Near-Infrared Spectroscopy for Non-invasive Discrimination of Spirulina Platensis. , 2009, , .		0
90	Determination of α-linolenic acid and linoleic acid in edible oils using near-infrared spectroscopy improved by wavelet transform and uninformative variable elimination. Analytica Chimica Acta, 2009, 634, 166-171.	5.4	95

#	Article	IF	CITATIONS
91	Detecting the quality of glycerol monolaurate: A method for using Fourier transform infrared spectroscopy with wavelet transform and modified uninformative variable elimination. Analytica Chimica Acta, 2009, 638, 16-22.	5.4	36
92	Exploring Near and Midinfrared Spectroscopy to Predict Trace Iron and Zinc Contents in Powdered Milk. Journal of Agricultural and Food Chemistry, 2009, 57, 1697-1704.	5.2	64
93	Application of image texture for the sorting of tea categories using multi-spectral imaging technique and support vector machine. Journal of Food Engineering, 2008, 88, 474-483.	5.2	80
94	Study on infrared spectroscopy technique for fast measurement of protein content in milk powder based on LS-SVM. Journal of Food Engineering, 2008, 84, 124-131.	5.2	189
95	Short-wave near-infrared spectroscopy analysis of major compounds in milk powder and wavelength assignment. Analytica Chimica Acta, 2008, 610, 232-242.	5.4	115
96	Study on brand identification of monosodium glutamate using sensitive wavelengths of short-wave near infrared spectroscopy. , 2008, , .		0
97	Short-wave near-infrared spectroscopy technique for fast determination of carbohydrate content in milk powder. , 2008, , .		2
98	Content Determination of Proteins in Milk Powder Using Short-Wave Near-Infrared Spectroscopy. , 2008, , .		1
99	Independent Component Analysis and Support Vector Machine combined for Brands Identification of Milk Powder Based on Visible and Short-Wave Near-Infrared Spectroscopy. , 2008, , .		0
100	Short-Wave Near-Infrared Spectroscopy of Milk Powder: Quantitative Analysis of Fat Content. , 2008, ,		1
101	A new method to discriminate tea categories. , 2008, , .		1
102	A new signal de-noising algorithm combining improved thresholding and patternsearch algorithm. , 2008, , .		0
103	An Effective Signal De-noising Algorithm Combining Optimal Wavelet Packet Basis and Translation-Invariant Algorithm. , 2008, , .		2
104	Application of Least-Square Support Vector Machines in Qualitative Analysis of Visible and Near Infrared Spectra: Determination of Species and Producing Area of Panax. , 2008, , .		2
105	Fast Measurement of Protein and Fat Content in Milk Powder Based on Infrared Spectroscopy Technique and LS-SVM. , 2008, , .		0
106	A New Algorithm for Solving Frequency Band Derangement of Wavelet Packets. , 2008, , .		0
107	Fast Measurement of Sugar Content of Yogurt Using Vis/NIR-Spectroscopy. International Journal of Food Properties, 2007, 10, 1-7.	3.0	36
108	Application of Image Texture for Discrimination of Tea Categories Using Multi-spectral Imaging Technique and Support Vector Machine. , 2007, , .		1

#	Article	IF	CITATIONS
109	Vis-NIR Spectroscopy for Non-destructive Classification of Juicy Peach. , 2006, , .		1