
Pierangelo Sardo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4787942/publications.pdf Version: 2024-02-01

DIEDANCELO SADO

#	Article	IF	CITATIONS
1	Microtubule Dynamics and Neuronal Excitability: Advances on Cytoskeletal Components Implicated in Epileptic Phenomena. Cellular and Molecular Neurobiology, 2022, 42, 533-543.	1.7	11
2	Ketogenic and Modified Mediterranean Diet as a Tool to Counteract Neuroinflammation in Multiple Sclerosis: Nutritional Suggestions. Nutrients, 2022, 14, 2384.	1.7	25
3	Modulating Long Term Memory at Late-Encoding Phase: An rTMS Study. Brain Topography, 2021, 34, 834-839.	0.8	4
4	Cannabinoids, TRPV and nitric oxide: the three ring circus of neuronal excitability. Brain Structure and Function, 2020, 225, 1-15.	1.2	15
5	Being in the Past and Perform the Future in a Virtual World: VR Applications to Assess and Enhance Episodic and Prospective Memory in Normal and Pathological Aging. Frontiers in Human Neuroscience, 2020, 14, 297.	1.0	9
6	Through Predictive Personalized Medicine. Brain Sciences, 2020, 10, 594.	1.1	2
7	Haptic Perception in Extreme Obesity: qEEG Study Focused on Predictive Coding and Body Schema. Brain Sciences, 2020, 10, 908.	1.1	9
8	3D Printing Neuron Equivalent Circuits: An Undergraduate Laboratory Exercise. Journal of Undergraduate Neuroscience Education: JUNE: A Publication of FUN, Faculty for Undergraduate Neuroscience, 2019, 18, T1-T8.	0.6	0
9	Brain Distribution and Modulation of Neuronal Excitability by Indicaxanthin From Opuntia Ficus Indica Administered at Nutritionally-Relevant Amounts. Frontiers in Aging Neuroscience, 2018, 10, 133.	1.7	26
10	Comparative Study of the Effects Exerted by N-Valproyl-L-Phenylalanine and N-valproyl-L-tryptophan on CA1 Hippocampal Epileptiform Activity in Rat. Current Pharmaceutical Design, 2018, 24, 1849-1858.	0.9	5
11	Neuronal nitric oxide synthase is involved in CB/TRPV1 signalling: Focus on control of hippocampal hyperexcitability. Epilepsy Research, 2017, 138, 18-25.	0.8	13
12	Hippocampal Hyperexcitability is Modulated by Microtubule-Active Agent: Evidence from In Vivo and In Vitro Epilepsy Models in the Rat. Frontiers in Cellular Neuroscience, 2016, 10, 29.	1.8	18
13	Involvement of TRPV1 channels in the activity of the cannabinoid WIN 55,212-2 in an acute rat model of temporal lobe epilepsy. Epilepsy Research, 2016, 122, 56-65.	0.8	25
14	Indicaxanthin from <i>Opuntia ficus-indica</i> Crosses the Blood–Brain Barrier and Modulates Neuronal Bioelectric Activity in Rat Hippocampus at Dietary-Consistent Amounts. Journal of Agricultural and Food Chemistry, 2015, 63, 7353-7360.	2.4	39
15	Cannabinoid and nitric oxide signaling interplay in the modulation of hippocampal hyperexcitability: Study on electrophysiological and behavioral models of temporal lobe epilepsy in the rat. Neuroscience, 2015, 303, 149-159.	1.1	21
16	Role of CB2 receptors and cGMP pathway on the cannabinoid-dependent antiepileptic effects in an in vivo model of partial epilepsy. Epilepsy Research, 2014, 108, 1711-1718.	0.8	35
17	Pregnenolone sulphate enhances spatial orientation and object discrimination in adult male rats: Evidence from a behavioural and electrophysiological study. Behavioural Brain Research, 2014, 258, 193-201.	1.2	15
18	Early handling effect on female rat spatial and non-spatial learning and memory. Behavioural Processes, 2014, 103, 9-16.	0.5	33

PIERANGELO SARDO

#	Article	IF	CITATIONS
19	N-Valproyl-L-Phenylalanine as New Potential Antiepileptic Drug: Synthesis, Characterization and In Vitro Studies on Stability, Toxicity and Anticonvulsant Efficacy. Medicinal Chemistry, 2014, 11, 30-40.	0.7	7
20	Antiepileptic effect of dimethyl sulfoxide in a rat model of temporal lobe epilepsy. Neuroscience Letters, 2013, 546, 31-35.	1.0	28
21	Inhibitory effects of N-valproyl-l-tryptophan on high potassium, low calcium and low magnesium-induced CA1 hippocampal epileptiform bursting activity in rat brain slices. Journal of Neural Transmission, 2012, 119, 1249-1259.	1.4	11
22	Alcohol preference, behavioural reactivity and cognitive functioning in female rats exposed to a three-bottle choice paradigm. Behavioural Brain Research, 2012, 234, 11-19.	1.2	11
23	Modulation of in vivo GABA-evoked responses by nitric oxide-active compounds in the globus pallidus of rat. Journal of Neural Transmission, 2012, 119, 911-921.	1.4	9
24	Nitric oxide-active compounds modulate the intensity of glutamate-evoked responses in the globus pallidus of the rat. Life Sciences, 2011, 88, 1113-1120.	2.0	9
25	N-Valproyl-L-Tryptophan for CNS-Targeting: Synthesis, Characterization and Efficacy In Vitro Studies of a New Potential Antiepileptic Drug. Medicinal Chemistry, 2011, 7, 9-17.	0.7	7
26	Intensity of GABAâ€evoked responses is modified by nitric oxideâ€ective compounds in the subthalamic nucleus of the rat: A microiontophoretic study. Journal of Neuroscience Research, 2009, 87, 2340-2350.	1.3	11
27	Nitric oxide- and cGMP-active compounds affect the discharge of substantia nigra pars reticulata neurons: in vivo evidences in the rat. Journal of Neural Transmission, 2009, 116, 539-549.	1.4	7
28	In the rat maximal dentate activation model of partial complex epilepsy, the anticonvulsant activity of levetiracetam is modulated by nitric oxide-active drugs. Journal of Neural Transmission, 2009, 116, 831-839.	1.4	16
29	Cholecystokininâ€8 sulfate modulates the anticonvulsant efficacy of vigabatrin in an experimental model of partial complex epilepsy in the rat. Epilepsia, 2009, 50, 721-730.	2.6	12
30	Evidences of cannabinoids-induced modulation of paroxysmal events in an experimental model of partial epilepsy in the rat. Neuroscience Letters, 2009, 462, 135-139.	1.0	27
31	Lamotrigine differently modulates 7-nitroindazole and L-arginine influence on rat maximal dentate gyrus activation. Journal of Neural Transmission, 2008, 115, 27-34.	1.4	10
32	Modulatory effects of nitric oxide-active drugs on the anticonvulsant activity of lamotrigine in an experimental model of partial complex epilepsy in the rat. BMC Neuroscience, 2007, 8, 47.	0.8	22
33	The discharge of subthalamic neurons is modulated by inhibiting the nitric oxide synthase in the rat. Neuroscience Letters, 2006, 396, 252-256.	1.0	11
34	Influence of Spatial Information on Responses of Tonically Active Neurons in the Monkey Striatum. Journal of Neurophysiology, 2006, 95, 2975-2986.	0.9	36
35	Effects of nitric oxide-active drugs on the discharge of subthalamic neurons: microiontophoretic evidence in the rat. European Journal of Neuroscience, 2006, 24, 1995-2002.	1.2	18
36	Involvement of nitric oxide-soluble guanylyl cyclase pathway in the control of maximal dentate gyrus activation in the rat. Journal of Neural Transmission, 2006, 113, 1855-1861.	1.4	14

PIERANGELO SARDO

#	Article	IF	CITATIONS
37	CCK-8S systemic administration blocks the 7-nitroindazole-induced effects on the EEG of striatum and globus pallidus: a FFT analysis in the rat. In Vivo, 2004, 18, 317-23.	0.6	1
38	Nitric oxide and brain hyperexcitability. In Vivo, 2004, 18, 357-66.	0.6	40
39	Nitric oxide modulates striatal neuronal activity via soluble guanylyl cyclase: An in vivo microiontophoretic study in rats. Synapse, 2003, 48, 100-107.	0.6	25
40	Nitric oxide-induced inhibition on striatal cells and excitation on globus pallidus neurons: a microiontophoretic study in the rat. Neuroscience Letters, 2003, 343, 101-104.	1.0	15
41	Inhibition of nitric oxide synthase influences the activity of striatal neurons in the rat. Neuroscience Letters, 2002, 325, 179-182.	1.0	20
42	Nitric oxide and cortico-striato-pallidal motor circuitry: Quantitative EEG analysis of surface and depth recordings. Neuroscience Research Communications, 2002, 30, 121-133.	0.2	13
43	Reward Unpredictability inside and outside of a Task Context as a Determinant of the Responses of Tonically Active Neurons in the Monkey Striatum. Journal of Neuroscience, 2001, 21, 5730-5739.	1.7	73
44	Influence of the predicted time of stimuli eliciting movements on responses of tonically active neurons in the monkey striatum. European Journal of Neuroscience, 2000, 12, 1801-1816.	1.2	53
45	Influence of Predictive Information on Responses of Tonically Active Neurons in the Monkey Striatum. Journal of Neurophysiology, 1998, 80, 3341-3344.	0.9	39
46	Lateral habenular influence on dorsal raphe neurons. Brain Research Bulletin, 1996, 41, 47-52.	1.4	92
47	Neuropsychology of selective attention and magnetic cortical stimulation. International Journal of Psychophysiology, 1996, 21, 83-89.	0.5	7
48	Lateral habenula and hippocampal units: electrophysiological and iontophoretic study. Brain Research Bulletin, 1995, 36, 539-543.	1.4	12