
Yilong Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4787712/publications.pdf Version: 2024-02-01

YUONG CHENC

#	Article	IF	CITATIONS
1	Green Tea Derivative Driven Smart Hydrogels with Desired Functions for Chronic Diabetic Wound Treatment. Advanced Functional Materials, 2021, 31, 2009442.	14.9	202
2	Cationic polymers for non-viral gene delivery to human T cells. Journal of Controlled Release, 2018, 282, 140-147.	9.9	151
3	Preparation of photo-cross-linked pH-responsive polypeptide nanogels as potential carriers for controlled drug delivery. Journal of Materials Chemistry, 2011, 21, 11383.	6.7	138
4	PLK1shRNA and doxorubicin co-loaded thermosensitive PLGA-PEG-PLGA hydrogels for osteosarcoma treatment. Biomaterials, 2014, 35, 8723-8734.	11.4	136
5	Localized Co-delivery of Doxorubicin, Cisplatin, and Methotrexate by Thermosensitive Hydrogels for Enhanced Osteosarcoma Treatment. ACS Applied Materials & Interfaces, 2015, 7, 27040-27048.	8.0	134
6	Component effect of stem cell-loaded thermosensitive polypeptide hydrogels on cartilage repair. Acta Biomaterialia, 2018, 73, 103-111.	8.3	117
7	Virusâ€Inspired Polymer for Efficient Inâ€Vitro and Inâ€Vivo Gene Delivery. Angewandte Chemie - International Edition, 2016, 55, 12013-12017.	13.8	111
8	Thermosensitive hydrogels based on polypeptides for localized and sustained delivery of anticancer drugs. Biomaterials, 2013, 34, 10338-10347.	11.4	109
9	Plasma-activated water: An alternative disinfectant for S protein inactivation to prevent SARS-CoV-2 infection. Chemical Engineering Journal, 2021, 421, 127742.	12.7	109
10	pH and reduction dual responsive polyurethane triblock copolymers for efficient intracellular drug delivery. Soft Matter, 2013, 9, 2637.	2.7	103
11	Decisive Role of Hydrophobic Side Groups of Polypeptides in Thermosensitive Gelation. Biomacromolecules, 2012, 13, 2053-2059.	5.4	97
12	In Vitro Study of Electroactive Tetraaniline-Containing Thermosensitive Hydrogels for Cardiac Tissue Engineering. Biomacromolecules, 2014, 15, 1115-1123.	5.4	97
13	Extremely Tough, Puncture-Resistant, Transparent, and Photoluminescent Polyurethane Elastomers for Crack Self-Diagnose and Healing Tracking. ACS Applied Materials & Interfaces, 2020, 12, 30847-30855.	8.0	92
14	Photoactivatable Prodrug-Backboned Polymeric Nanoparticles for Efficient Light-Controlled Gene Delivery and Synergistic Treatment of Platinum-Resistant Ovarian Cancer. Nano Letters, 2020, 20, 3039-3049.	9.1	92
15	Injectable Hydrogel–Microsphere Construct with Sequential Degradation for Locally Synergistic Chemotherapy. ACS Applied Materials & Interfaces, 2017, 9, 3487-3496.	8.0	90
16	<i>In vitro</i> and <i>in vivo</i> evaluation of 3D bioprinted small-diameter vasculature with smooth muscle and endothelium. Biofabrication, 2020, 12, 015004.	7.1	90
17	Efficacious hepatoma-targeted nanomedicine self-assembled from galactopeptide and doxorubicin driven by two-stage physical interactions. Journal of Controlled Release, 2013, 169, 193-203.	9.9	89
18	Versatile synthesis of temperature-sensitive polypeptides by click grafting of oligo(ethylene glycol). Polymer Chemistry, 2011, 2, 2627.	3.9	85

YILONG CHENG

#	Article	IF	CITATIONS
19	Polythiourethane Covalent Adaptable Networks for Strong and Reworkable Adhesives and Fully Recyclable Carbon Fiber-Reinforced Composites. ACS Applied Materials & Interfaces, 2020, 12, 47975-47983.	8.0	85
20	Bioactive skin-mimicking hydrogel band-aids for diabetic wound healing and infectious skin incision treatment. Bioactive Materials, 2021, 6, 3962-3975.	15.6	85
21	Injectable Cholesterolâ€Enhanced Stereocomplex Polylactide Thermogel Loading Chondrocytes for Optimized Cartilage Regeneration. Advanced Healthcare Materials, 2019, 8, e1900312.	7.6	81
22	Poly(<scp>L</scp> â€glutamic acid) grafted with oligo(2â€(2â€(2â€methoxyethoxy)ethoxy)ethyl methacrylate): Thermal phase transition, secondary structure, and selfâ€assembly. Journal of Polymer Science Part A, 2011, 49, 2665-2676.	2.3	72
23	Injectable enzymatically crosslinked hydrogels based on a poly(<scp>l</scp> -glutamic acid) graft copolymer. Polymer Chemistry, 2014, 5, 5069-5076.	3.9	62
24	Injectable hydrogels with high drug loading through B–N coordination and ROS-triggered drug release for efficient treatment of chronic periodontitis in diabetic rats. Biomaterials, 2022, 282, 121387.	11.4	62
25	Versatile Biofunctionalization of Polypeptide-Based Thermosensitive Hydrogels via Click Chemistry. Biomacromolecules, 2013, 14, 468-475.	5.4	61
26	Smart Unimolecular Micelle-Based Polyprodrug with Dual-Redox Stimuli Response for Tumor Microenvironment: Enhanced in Vivo Delivery Efficiency and Tumor Penetration. ACS Applied Materials & Interfaces, 2019, 11, 36130-36140.	8.0	56
27	pH-sensitive polymer micelles provide selective and potentiated lytic capacity to venom peptides for effective intracellular delivery. Biomaterials, 2019, 192, 235-244.	11.4	55
28	Highly Stretchable Nanocomposite Hydrogels with Outstanding Antifatigue Fracture Based on Robust Noncovalent Interactions for Wound Healing. Chemistry of Materials, 2021, 33, 6453-6463.	6.7	53
29	In vitro and in vivo delivery of siRNA via VIPER polymer system to lung cells. Journal of Controlled Release, 2018, 276, 50-58.	9.9	52
30	Reduction-responsive cross-linked micelles based on PEGylated polypeptides prepared via click chemistry. Polymer Chemistry, 2013, 4, 3851.	3.9	51
31	Development of switchable polymers to address the dilemma of stability and cargo release in polycationic nucleic acid carriers. Biomaterials, 2017, 127, 89-96.	11.4	49
32	Reconfigurable 4D Printing of Reprocessable and Mechanically Strong Polythiourethane Covalent Adaptable Networks. Advanced Functional Materials, 2022, 32, .	14.9	47
33	Ultradurable Noncovalent Cross-Linked Hydrogels with Low Hysteresis and Robust Elasticity for Flexible Electronics. Chemistry of Materials, 2022, 34, 3311-3322.	6.7	46
34	Tunable and Processable Shape-Memory Materials Based on Solvent-Free, Catalyst-Free Polycondensation between Formaldehyde and Diamine at Room Temperature. ACS Macro Letters, 2019, 8, 582-587.	4.8	45
35	Hindered urea bonds for dynamic polymers: An overview. Reactive and Functional Polymers, 2021, 159, 104807.	4.1	43
36	Identifying key barriers in cationic polymer gene delivery to human T cells. Biomaterials Science, 2019,	5.4	40

YILONG CHENG

#	Article	IF	CITATIONS
37	Nano‣ized Sunflower Polycations As Effective Gene Transfer Vehicles. Small, 2016, 12, 2750-2758.	10.0	39
38	Serum Nuclease Susceptibility of mRNA Cargo in Condensed Polyplexes. Molecular Pharmaceutics, 2018, 15, 2268-2276.	4.6	39
39	Plasma-activated thermosensitive biogel as an exogenous ROS carrier for post-surgical treatment of cancer. Biomaterials, 2021, 276, 121057.	11.4	37
40	H-Bonding Supramolecular Hydrogels with Promising Mechanical Strength and Shape Memory Properties for Postoperative Antiadhesion Application. ACS Applied Materials & Interfaces, 2020, 12, 34161-34169.	8.0	36
41	Introduction of a Stable Radical in Polymer Capacitor Enables High Energy Storage and Pulse Discharge Efficiency. Chemistry of Materials, 2020, 32, 9355-9362.	6.7	29
42	Tunable, Injectable Hydrogels Based on Peptide-Cross-Linked, Cyclized Polymer Nanoparticles for Neural Progenitor Cell Delivery. Biomacromolecules, 2017, 18, 2723-2731.	5.4	26
43	Highly Stretchable, Tough, Resilient, and Antifatigue Hydrogels Based on Multiple Hydrogen Bonding Interactions Formed by Phenylalanine Derivatives. Biomacromolecules, 2021, 22, 1297-1304.	5.4	26
44	NIR-triggered dynamic exchange and intrinsic photothermal-responsive covalent adaptable networks. Chemical Engineering Journal, 2022, 428, 131212.	12.7	26
45	Side chain impacts on pH- and thermo-responsiveness of tertiary amine functionalized polypeptides. Journal of Polymer Science Part A, 2014, 52, 671-679.	2.3	24
46	Hydrogen bond reinforced, transparent polycaprolactone-based degradable polyurethane. Materials Chemistry Frontiers, 2021, 5, 5371-5381.	5.9	24
47	Construction of supramolecular hydrogels using imidazolidinyl urea as hydrogen bonding reinforced factor. Journal of Materials Chemistry B, 2020, 8, 3058-3063.	5.8	23
48	Virus-Inspired Polymer for Efficient Inâ€Vitro and Inâ€Vivo Gene Delivery. Angewandte Chemie, 2016, 128, 12192-12196.	2.0	22
49	Injectable Enzymatically Crossâ€linked Hydrogels with Lightâ€Controlled Degradation Profile. Macromolecular Rapid Communications, 2018, 39, e1800272.	3.9	21
50	Junction opener protein increases nanoparticle accumulation in solid tumors. Journal of Controlled Release, 2018, 272, 9-16.	9.9	18
51	Enhanced Osseointegration by the Hierarchical Micro-Nano Topography on Selective Laser Melting Ti-6Al-4V Dental Implants. Frontiers in Bioengineering and Biotechnology, 2020, 8, 621601.	4.1	18
52	Resveratrol modulates the apoptosis and autophagic death of human lung adenocarcinoma A549 cells via a p53â€dependent pathway: Integrated bioinformatics analysis and experimental validation. International Journal of Oncology, 2020, 57, 925-938.	3.3	18
53	Glomerular disease augments kidney accumulation of synthetic anionic polymers. Biomaterials, 2018, 178, 317-325.	11.4	17
54	Combination of Polydopamine Coating and Plasma Pretreatment to Improve Bond Ability Between PEEK and Primary Teeth. Frontiers in Bioengineering and Biotechnology, 2020, 8, 630094.	4.1	13

YILONG CHENG

#	Article	IF	CITATIONS
55	Imidazolidinyl urea reinforced polyacrylamide hydrogels through the formation of multiple hydrogen bonds. Reactive and Functional Polymers, 2022, 172, 105183.	4.1	12
56	Injectable and selfâ€healing hydrogels with tissue adhesiveness and antibacterial activity as wound dressings for infected wound healing. Journal of Polymer Science, 2022, 60, 1511-1520.	3.8	10
57	Luminescence and structure of Eu(DBM)3Phen-doped vesicles composed of amphiphilic PNIPAM-b-PAzoM. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 200, 101-105.	3.9	8
58	PLK1shRNA and doxorubicin co-loaded thermosensitive PLGA–PEG–PLGA hydrogels for localized and combined treatment of human osteosarcoma. Journal of Controlled Release, 2015, 213, e18.	9.9	8
59	Versatile preparation of vesicle from amphiphilic bottlebrush block copolymers. Reactive and Functional Polymers, 2019, 134, 166-173.	4.1	8
60	Visualizing Newly Synthesized RNA by Bioorthogonal Labeling-Primed DNA Amplification. Analytical Chemistry, 2020, 92, 8444-8449.	6.5	8
61	Catalystâ€Free Oneâ€Step Preparation of Selfâ€Crosslinked pHâ€Responsive Vesicles. Macromolecular Rapid Communications, 2019, 40, 1900149.	3.9	6
62	Chronic Diabetic Wound Treatment: Green Tea Derivative Driven Smart Hydrogels with Desired Functions for Chronic Diabetic Wound Treatment (Adv. Funct. Mater. 18/2021). Advanced Functional Materials, 2021, 31, 2170127.	14.9	6
63	Poly(ethylene glycol)-polypeptide Copolymer Micelles for Therapeutic Agent Delivery. Current Pharmaceutical Biotechnology, 2016, 17, 212-226.	1.6	6
64	The effect of alkyl side groups on the secondary structure and crystallization of poly(ethylene) Tj ETQq0 0 0 rgB1	- /Qverloct	k 10 Tf 50 38
65	An Enzymeâ€Responsive "Turnâ€on―Fluorescence Polymeric Superamphiphile as a Potential Visualizable Phosphate Prodrug Delivery Vehicle. Macromolecular Bioscience, 2018, 18, e1800045.	4.1	5
66	Polymer Nanoparticle-Based Chemotherapy for Spinal Malignancies. Journal of Nanomaterials, 2016, 2016, 1-14.	2.7	4
67	Smart Polymeric Nanocarriers. Journal of Nanomaterials, 2016, 2016, 1-2.	2.7	4
68	Peptide modified polycations with pH triggered lytic activity for efficient gene delivery. Biomaterials Science, 2020, 8, 6301-6308.	5.4	4
69	Boronic Acid Copolymers for Direct Loading and Acid-Triggered Release of Bis-T-23 in Cultured Podocytes. ACS Biomaterials Science and Engineering, 2018, 4, 3968-3973.	5.2	3
70	A polymeric prodrug for non-invasive, real-time reporting drug release based on "turn-on― fluorescent probes. Reactive and Functional Polymers, 2020, 154, 104649.	4.1	2
71	Peptide-Modified Polycations with Acid-Triggered Lytic Activity for Efficient Gene Delivery. Biomaterial Engineering, 2021, , 1-17.	0.2	0
72	Peptide-Modified Polycations with Acid-Triggered Lytic Activity for Efficient Gene Delivery. Biomaterial Engineering, 2022, , 235-251.	0.2	0