Ulrich Lächelt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4787671/publications.pdf

Version: 2024-02-01

218592 155592 3,402 57 26 55 citations h-index g-index papers 60 60 60 3809 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nucleic Acid Therapeutics Using Polyplexes: A Journey of 50 Years (and Beyond). Chemical Reviews, 2015, 115, 11043-11078.	23.0	495
2	The Current Status of MOF and COF Applications. Angewandte Chemie - International Edition, 2021, 60, 23975-24001.	7.2	450
3	Imparting Functionality to MOF Nanoparticles by External Surface Selective Covalent Attachment of Polymers. Chemistry of Materials, 2016, 28, 3318-3326.	3.2	218
4	Multifunctional Efficiency: Extending the Concept of Atom Economy to Functional Nanomaterials. ACS Nano, 2018, 12, 2094-2105.	7.3	210
5	The Chemistry of Reticular Framework Nanoparticles: MOF, ZIF, and COF Materials. Advanced Functional Materials, 2020, 30, 1909062.	7.8	174
6	Multifunctional Nanoparticles by Coordinative Self-Assembly of His-Tagged Units with Metal–Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 2359-2368.	6.6	171
7	Polyplex Evolution: Understanding Biology, Optimizing Performance. Molecular Therapy, 2017, 25, 1476-1490.	3.7	146
8	Toxicity of metal–organic framework nanoparticles: from essential analyses to potential applications. Chemical Society Reviews, 2022, 51, 464-484.	18.7	144
9	Nanosized Multifunctional Polyplexes for Receptor-Mediated SiRNA Delivery. ACS Nano, 2012, 6, 5198-5208.	7. 3	127
10	Fine-tuning of proton sponges by precise diaminoethanes and histidines in pDNA polyplexes. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 35-44.	1.7	116
11	Defined Folate-PEG-siRNA Conjugates for Receptor-specific Gene Silencing. Molecular Therapy - Nucleic Acids, 2012, 1, e7.	2.3	98
12	Coordinative Binding of Polymers to Metal–Organic Framework Nanoparticles for Control of Interactions at the Biointerface. ACS Nano, 2019, 13, 3884-3895.	7.3	73
13	Solid-phase-assisted synthesis of targeting peptide–PEG–oligo(ethane amino)amides for receptor-mediated gene delivery. Organic and Biomolecular Chemistry, 2012, 10, 3258.	1.5	65
14	Histidine-rich stabilized polyplexes for cMet-directed tumor-targeted gene transfer. Nanoscale, 2015, 7, 5350-5362.	2.8	61
15	Dual antitumoral potency of EG5 siRNA nanoplexes armed with cytotoxic bifunctional glutamyl-methotrexate targeting ligand. Biomaterials, 2016, 77, 98-110.	5.7	57
16	Augmented glioma-targeted theranostics using multifunctional polymer-coated carbon nanodots. Biomaterials, 2017, 141, 29-39.	5.7	52
17	pH-Reversible Cationic RNase A Conjugates for Enhanced Cellular Delivery and Tumor Cell Killing. Biomacromolecules, 2016, 17, 173-182.	2.6	42
18	Tumoral gene silencing by receptor-targeted combinatorial siRNA polyplexes. Journal of Controlled Release, 2016, 244, 280-291.	4.8	40

#	Article	IF	CITATIONS
19	Antitumoral Cascade-Targeting Ligand for IL-6 Receptor-Mediated Gene Delivery to Glioma. Molecular Therapy, 2017, 25, 1556-1566.	3.7	40
20	Non-viral delivery of the CRISPR/Cas system: DNA <i>versus</i> RNA <i>versus</i> RNP. Biomaterials Science, 2022, 10, 1166-1192.	2.6	40
21	Combinatorial Optimization of Sequence-Defined Oligo(ethanamino)amides for Folate Receptor-Targeted pDNA and siRNA Delivery. Bioconjugate Chemistry, 2016, 27, 647-659.	1.8	38
22	Reticular Nanoscience: Bottom-Up Assembly Nanotechnology. Journal of the American Chemical Society, 2022, 144, 7531-7550.	6.6	38
23	Dual-Targeted Polyplexes Based on Sequence-Defined Peptide-PEG-Oligoamino Amides. Journal of Pharmaceutical Sciences, 2015, 104, 464-475.	1.6	34
24	Synthetic Polyglutamylation of Dual-Functional MTX Ligands for Enhanced Combined Cytotoxicity of Poly(I:C) Nanoplexes. Molecular Pharmaceutics, 2014, 11, 2631-2639.	2.3	30
25	Lipo-Oligomer Nanoformulations for Targeted Intracellular Protein Delivery. Biomacromolecules, 2017, 18, 2509-2520.	2.6	28
26	Native chemical ligation for conversion of sequence-defined oligomers into targeted pDNA and siRNA carriers. Journal of Controlled Release, 2014, 180, 42-50.	4.8	27
27	Combining reactive triblock copolymers with functional cross-linkers: A versatile pathway to disulfide stabilized-polyplex libraries and their application as pDNA vaccines. Journal of Controlled Release, 2017, 258, 146-160.	4.8	27
28	Delivery of Cas9/sgRNA Ribonucleoprotein Complexes via Hydroxystearyl Oligoamino Amides. Bioconjugate Chemistry, 2020, 31, 729-742.	1.8	26
29	Controllable Acoustic Mixing of Fluids in Microchannels for the Fabrication of Therapeutic Nanoparticles. Micromachines, 2016, 7, 150.	1.4	25
30	Toward Artificial Immunotoxins: Traceless Reversible Conjugation of RNase A with Receptor Targeting and Endosomal Escape Domains. Molecular Pharmaceutics, 2017, 14, 1439-1449.	2.3	24
31	Combination of sequenceâ€defined oligoaminoamides with transferrinâ€polycation conjugates for receptorâ€targeted gene delivery. Journal of Gene Medicine, 2015, 17, 161-172.	1.4	22
32	Minicircle Versus Plasmid DNA Delivery by Receptor-Targeted Polyplexes. Human Gene Therapy, 2017, 28, 862-874.	1.4	21
33	Epidermal growth factor receptor targeted methotrexate and small interfering RNA coâ€delivery. Journal of Gene Medicine, 2018, 20, e3041.	1.4	20
34	Dynamic mRNA polyplexes benefit from bioreducible cleavage sites for in vitro and in vivo transfer. Journal of Controlled Release, 2021, 339, 27-40.	4.8	20
35	Assessing potential peptide targeting ligands by quantification of cellular adhesion of model nanoparticles under flow conditions. Journal of Controlled Release, 2015, 213, 79-85.	4.8	19
36	Tuning the Morphological Appearance of Iron(III) Fumarate: Impact on Material Characteristics and Biocompatibility. Chemistry of Materials, 2020, 32, 2253-2263.	3.2	19

#	Article	IF	Citations
37	Der derzeitige Stand von MOF†und COFâ€Anwendungen. Angewandte Chemie, 2021, 133, 24174-24202.	1.6	18
38	Influence of Defined Hydrophilic Blocks within Oligoaminoamide Copolymers: Compaction versus Shielding of pDNA Nanoparticles. Polymers, 2017, 9, 142.	2.0	17
39	Acid-labile pHPMA modification of four-arm oligoaminoamide pDNA polyplexes balances shielding and gene transfer activity in vitro and in vivo. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 105, 85-96.	2.0	16
40	Sequenceâ€Defined Oligoamide Drug Conjugates of Pretubulysin and Methotrexate for Folate Receptor Targeted Cancer Therapy. Macromolecular Bioscience, 2017, 17, 1600520.	2.1	16
41	Supramolecular Assembly of Aminoethyleneâ€Lipopeptide PMO Conjugates into RNA Spliceâ€ S witching Nanomicelles. Advanced Functional Materials, 2019, 29, 1906432.	7.8	14
42	Coreâ€Shell Functionalized Zirconiumâ€Pemetrexed Coordination Nanoparticles as Carriers with a High Drug Content. Advanced Therapeutics, 2019, 2, 1900120.	1.6	12
43	Invading target cells: multifunctional polymer conjugates as therapeutic nucleic acid carriers. Frontiers of Chemical Science and Engineering, 2011, 5, 275-286.	2.3	11
44	Multifunctional Cationic PeptoStars as siRNA Carrier: Influence of Architecture and Histidine Modification on Knockdown Potential. Macromolecular Bioscience, 2020, 20, 1900152.	2.1	11
45	Transient Permeabilization of Living Cells: Combining Shear Flow and Acoustofluidic Trapping for the Facilitated Uptake of Molecules. Processes, 2021, 9, 913.	1.3	11
46	Controlling Nanoparticle Formulation: A Low-Budget Prototype for the Automation of a Microfluidic Platform. Processes, 2021, 9, 129.	1.3	8
47	From Artificial Amino Acids to Sequence-Defined Targeted Oligoaminoamides. Methods in Molecular Biology, 2016, 1445, 235-258.	0.4	6
48	Size tunable nanoparticle formation employing droplet fusion by acoustic streaming applied to polyplexes. Journal Physics D: Applied Physics, 2019, 52, 244002.	1.3	5
49	A microfluidic approach for sequential assembly of siRNA polyplexes with a defined structure-activity relationship. , 0, 1 , e 1 .		5
50	Crossâ€Linkable Polyion Complex Micelles from Polypept(o)ideâ€Based ABCâ€Triblock Copolymers for siRNA Delivery. Macromolecular Rapid Communications, 2022, 43, e2100698.	2.0	5
51	Receptor-Targeted Dual pH-Triggered Intracellular Protein Transfer. ACS Biomaterials Science and Engineering, 2024, 10, 99-114.	2.6	3
52	Colloidal nanoparticles as pharmaceutical agents. Frontiers of Nanoscience, 2020, 16, 89-115.	0.3	2
53	Metal-organic Nanopharmaceuticals. Pharmaceutical Nanotechnology, 2020, 8, 163-190.	0.6	2
54	Influences on Cellular Adhesion of Nanoparticles under Blood Flow-Like Conditions. Biophysical Journal, 2014, 106, 210a.	0.2	1

Ulrich LÃØHELT

#	Article	IF	CITATIONS
55	Multifunctional Oligoaminoamides for the Receptor-Specific Delivery of Therapeutic RNA. Methods in Molecular Biology, 2015, 1324, 369-386.	0.4	1
56	Sequence-defined nucleic acid carriers combining distinct modules for complexation, shielding, receptor-targeting and endosomal escape. Journal of Controlled Release, 2015, 213, e106-e107.	4.8	1
57	493. Nonviral Gene Transfer by Sequence-Defined Proton-Sponges with Combined Nucleic Acid Binding and Endosomal Buffering: Balancing Basicities. Molecular Therapy, 2016, 24, S195.	3.7	O