Jose Luiz Proenca-Modena

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4787459/publications.pdf

Version: 2024-02-01

		218677	123424
82	4,485	26	61
papers	citations	h-index	g-index
93	93	93	9971
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Diagnostics of SARS-CoV-2 infection using electrical impedance spectroscopy with an immunosensor to detect the spike protein. Talanta, 2022, 239, 123076.	5.5	20
2	Detection of SARS-CoV-2 virus on the ocular surface of an asymptomatic health-care professional. Arquivos Brasileiros De Oftalmologia, 2022, 86, .	0.5	1
3	Previous Infection with SARS-CoV-2 Correlates with Increased Protective Humoral Responses after a Single Dose of an Inactivated COVID-19 Vaccine. Viruses, 2022, 14, 510.	3.3	6
4	Detection of SARS-CoV-2 virus via dynamic light scattering using antibody-gold nanoparticle bioconjugates against viral spike protein. Talanta, 2022, 243, 123355.	5.5	16
5	Identification of Compounds With Antiviral Activity Against SARS-CoV-2 in the MMV Pathogen Box Using a Phenotypic High-Throughput Screening Assay. Frontiers in Virology, 2022, 2, .	1.4	6
6	Clearance of Persistent SARS-CoV-2 RNA Detection in a NFκB-Deficient Patient in Association with the Ingestion of Human Breast Milk: A Case Report. Viruses, 2022, 14, 1042.	3.3	1
7	Identification and characterization of the anti-SARS-CoV-2 activity of cationic amphiphilic steroidal compounds. Virulence, 2022, 13, 1031-1048.	4.4	2
8	Microbiota-derived short-chain fatty acids do not interfere with SARS-CoV-2 infection of human colonic samples. Gut Microbes, 2021, 13, 1-9.	9.8	38
9	Rapid clinical recovery of a SARS-CoV-2 infected common variable immunodeficiency patient following the infusion of COVID-19 convalescent plasma. Allergy, Asthma and Clinical Immunology, 2021, 17, 14.	2.0	22
10	Flavonoids from Pterogyne nitens as Zika virus NS2B-NS3 protease inhibitors. Bioorganic Chemistry, 2021, 109, 104719.	4.1	26
11	Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science, 2021, 372, 815-821.	12.6	1,125
12	Low SARSâ€CoVâ€2 seroprevalence in a cohort of Brazilian sickle cell disease patients: Possible effects of emphasis on social isolation for a population initially considered to be at very high risk. EJHaem, 2021, 2, 478-482.	1.0	4
13	Identification of SARS-CoV-2 on the ocular surface in a cohort of COVID-19 patients from Brazil. Experimental Biology and Medicine, 2021, 246, 2495-2501.	2.4	5
14	Acid pH Increases SARS-CoV-2 Infection and the Risk of Death by COVID-19. Frontiers in Medicine, 2021, 8, 637885.	2.6	20
15	Serological Testing for COVID-19, Immunological Surveillance, and Exploration of Protective Antibodies. Frontiers in Immunology, 2021, 12, 635701.	4.8	13
16	Neutralisation of SARS-CoV-2 lineage P.1 by antibodies elicited through natural SARS-CoV-2 infection or vaccination with an inactivated SARS-CoV-2 vaccine: an immunological study. Lancet Microbe, The, 2021, 2, e527-e535.	7.3	92
17	Gas6 drives Zika virus-induced neurological complications in humans and congenital syndrome in immunocompetent mice. Brain, Behavior, and Immunity, 2021, 97, 260-274.	4.1	10
18	Respiratory Viral Shedding in Healthcare Workers Reinfected with SARS-CoV-2, Brazil, 2020. Emerging Infectious Diseases, 2021, 27, 1737-1740.	4.3	16

#	Article	IF	CITATIONS
19	Kinetics of peripheral blood neutrophils in severe coronavirus disease 2019. Clinical and Translational Immunology, 2021, 10, e1271.	3.8	36
20	Early use of nitazoxanide in mild COVID-19 disease: randomised, placebo-controlled trial. European Respiratory Journal, 2021, 58, 2003725.	6.7	117
21	Clusters of SARS-CoV-2 Lineage B.1.1.7 Infection after Vaccination with Adenovirus-Vectored and Inactivated Vaccines. Viruses, 2021, 13, 2127.	3.3	6
22	Ultraviolet germicidal irradiation is effective against SARS-CoV-2 in contaminated makeup powder and lipstick. Journal of Photochemistry and Photobiology, 2021, 8, 100072.	2.5	6
23	Lymphocyte Ratios Progressively Worsen in Non-Survivors of COVID-19. Blood, 2021, 138, 4196-4196.	1.4	1
24	Elevated Glucose Levels Favor SARS-CoV-2 Infection and Monocyte Response through a HIF-11±/Glycolysis-Dependent Axis. Cell Metabolism, 2020, 32, 437-446.e5.	16.2	578
25	Evolution and epidemic spread of SARS-CoV-2 in Brazil. Science, 2020, 369, 1255-1260.	12.6	454
26	Oropouche Virus Infects, Persists and Induces IFN Response in Human Peripheral Blood Mononuclear Cells as Identified by RNA PrimeFlowâ,,¢ and qRT-PCR Assays. Viruses, 2020, 12, 785.	3.3	7
27	TAM and TIM receptors mRNA expression in Zika virus infected placentas. Placenta, 2020, 101, 204-207.	1.5	10
28	Characterization of Placental Infection by Zika Virus in Humans: A Review of the Literature. Revista Brasileira De Ginecologia E Obstetricia, 2020, 42, 577-585.	0.8	7
29	Adequate Placental Sampling for the Diagnosis and Characterization of Placental Infection by Zika Virus. Frontiers in Microbiology, 2020, 11, 112.	3.5	17
30	Epstein–Barr virus induces morphological and molecular changes in thyroid neoplastic cells. Endocrine, 2020, 69, 321-330.	2.3	5
31	Microbiota-derived acetate protects against respiratory syncytial virus infection through a GPR43-type 1 interferon response. Nature Communications, 2019, 10, 3273.	12.8	234
32	Inflammation markers in the saliva of infants born from Zika-infected mothers: exploring potential mechanisms of microcephaly during fetal development. Scientific Reports, 2019, 9, 13606.	3.3	18
33	ZIKV-Specific NS1 Epitopes as Serological Markers of Acute Zika Virus Infection. Journal of Infectious Diseases, 2019, 220, 203-212.	4.0	11
34	Human adenovirus replication and persistence in hypertrophic adenoids and palatine tonsils in children. Journal of Medical Virology, 2019, 91, 1250-1262.	5.0	30
35	Pingu virus: A new picornavirus in penguins from Antarctica. Virus Evolution, 2019, 5, vez047.	4.9	7
36	Zika virus: lessons learned in Brazil. Microbes and Infection, 2018, 20, 661-669.	1.9	21

#	Article	IF	CITATIONS
37	Efficient detection of Zika virus RNA in patients' blood from the 2016 outbreak in Campinas, Brazil. Scientific Reports, 2018, 8, 4012.	3.3	19
38	The Relationship between Colonization by <i>Moraxella catarrhalis</i> and Tonsillar Hypertrophy. Canadian Journal of Infectious Diseases and Medical Microbiology, 2018, 2018, 1-9.	1.9	9
39	Outer Membrane Vesicles from Neisseria Meningitidis (Proteossome) Used for Nanostructured Zika Virus Vaccine Production. Scientific Reports, 2018, 8, 8290.	3.3	20
40	The A–Z of Zika drug discovery. Drug Discovery Today, 2018, 23, 1833-1847.	6.4	48
41	A Machine Learning Application Based in Random Forest for Integrating Mass Spectrometry-Based Metabolomic Data: A Simple Screening Method for Patients With Zika Virus. Frontiers in Bioengineering and Biotechnology, 2018, 6, 31.	4.1	25
42	The role of lipids in the inception, maintenance and complications of dengue virus infection. Scientific Reports, 2018, 8, 11826.	3.3	31
43	Syncytia Induction by Clinical Isolates of Human Respiratory Syncytial Virus A. Intervirology, 2017, 60, 56-60.	2.8	11
44	Specific Biomarkers Associated With Neurological Complications and Congenital Central Nervous System Abnormalities From Zika Virus–Infected Patients in Brazil. Journal of Infectious Diseases, 2017, 216, 172-181.	4.0	82
45	Oropouche virus is detected in peripheral blood leukocytes from patients. Journal of Medical Virology, 2017, 89, 1108-1111.	5.0	17
46	Serum Metabolic Alterations upon Zika Infection. Frontiers in Microbiology, 2017, 8, 1954.	3.5	36
47	The pathogens profile in children with otitis media with effusion and adenoid hypertrophy. PLoS ONE, 2017, 12, e0171049.	2.5	66
48	TLR3 is required for survival following Coxsackievirus B3 infection by driving T lymphocyte activation and polarization: The role of dendritic cells. PLoS ONE, 2017, 12, e0185819.	2.5	15
49	Interferon-Regulatory Factor 5-Dependent Signaling Restricts Orthobunyavirus Dissemination to the Central Nervous System. Journal of Virology, 2016, 90, 189-205.	3.4	22
50	A Lipidomics Approach in the Characterization of Zika-Infected Mosquito Cells: Potential Targets for Breaking the Transmission Cycle. PLoS ONE, 2016, 11, e0164377.	2.5	58
51	The Seasonality of Respiratory Viruses in Patients with Chronic Rhinosinusitis. American Journal of Rhinology and Allergy, 2015, 29, 19-22.	2.0	23
52	Oropouche Virus Infection and Pathogenesis Are Restricted by MAVS, IRF-3, IRF-7, and Type I Interferon Signaling Pathways in Nonmyeloid Cells. Journal of Virology, 2015, 89, 4720-4737.	3.4	37
53	Human and Murine IFIT1 Proteins Do Not Restrict Infection of Negative-Sense RNA Viruses of the Orthomyxoviridae, Bunyaviridae, and Filoviridae Families. Journal of Virology, 2015, 89, 9465-9476.	3.4	38
54	The TAM receptor Mertk protects against neuroinvasive viral infection by maintaining blood-brain barrier integrity. Nature Medicine, 2015, 21, 1464-1472.	30.7	113

#	Article	IF	CITATIONS
55	Respiratory viruses are continuously detected in children with chronic tonsillitis throughout the year. International Journal of Pediatric Otorhinolaryngology, 2014, 78, 1655-1661.	1.0	21
56	Hypertrophic Adenoid Is a Major Infection Site of Human Bocavirus 1. Journal of Clinical Microbiology, 2014, 52, 3030-3037.	3.9	21
57	Severe lower respiratory tract infection in infants and toddlers from a non-affluent population: viral etiology and co-detection as risk factors. BMC Infectious Diseases, 2013, 13, 41.	2.9	60
58	The IL-33/ST2 Pathway Controls Coxsackievirus B5–Induced Experimental Pancreatitis. Journal of Immunology, 2013, 191, 283-292.	0.8	40
59	Concurrent detection of other respiratory viruses in children shedding viable human respiratory syncytial virus. Journal of Medical Virology, 2013, 85, 1852-1859.	5.0	17
60	Viral load of human bocavirus-1 in stools from children with viral diarrhoea in Paraguay. Epidemiology and Infection, 2013, 141, 2576-2580.	2.1	15
61	Phylodynamics and Dispersal of HRSV Entails Its Permanence in the General Population in between Yearly Outbreaks in Children. PLoS ONE, 2012, 7, e41953.	2.5	18
62	High Rates of Detection of Respiratory Viruses in Tonsillar Tissues from Children with Chronic Adenotonsillar Disease. PLoS ONE, 2012, 7, e42136.	2.5	76
63	Respiratory Viral Infections. , 2011, , 378-391.		0
64	Detection of Human Bocavirus mRNA in Respiratory Secretions Correlates with High Viral Load and Concurrent Diarrhea. PLoS ONE, 2011, 6, e21083.	2.5	39
65	Human Bocavirus in Very Young Infants Hospitalized with Acute Respiratory Infection in Northeast Brazil. Journal of Tropical Pediatrics, 2010, 56, 125-127.	1.5	8
66	Apoptosis induced by Oropouche virus infection in HeLa cells is dependent on virus protein expression. Virus Research, 2010, 149, 56-63.	2.2	27
67	Positive Selection Results in Frequent Reversible Amino Acid Replacements in the G Protein Gene of Human Respiratory Syncytial Virus. PLoS Pathogens, 2009, 5, e1000254.	4.7	121
68	<i>Helicobacter pylori</i> : phenotypes, genotypes and virulence genes. Future Microbiology, 2009, 4, 223-240.	2.0	24
69	Human bocavirus respiratory infections in children. Epidemiology and Infection, 2009, 137, 1032-1036.	2.1	21
70	Involvement of the Helicobacter pylori plasticity region and cag pathogenicity island genes in the development of gastroduodenal diseases. European Journal of Clinical Microbiology and Infectious Diseases, 2008, 27, 1053-1059.	2.9	29
71	Association between Helicobacter pylori genotypes and gastric disorders in relation to the cag pathogenicity island. Diagnostic Microbiology and Infectious Disease, 2007, 59, 7-16.	1.8	25
72	H5N1 avian influenza virus: an overview. Brazilian Journal of Infectious Diseases, 2007, 11, 125-133.	0.6	22

#	Article	IF	CITATIONS
73	Correlation between Helicobacter pylori infection, gastric diseases and life habits among patients treated at a university hospital in Southeast Brazil. Brazilian Journal of Infectious Diseases, 2007, 11, 89-95.	0.6	13
74	Prevalence of Helicobacter pylori cagA, iceA and babA2 alleles in Brazilian patients with upper gastrointestinal diseases. Acta Tropica, 2006, 100, 232-240.	2.0	39
75	Virulence characteristics and epidemiology of Yersinia enterocolitica and Yersiniae other than Y. pseudotuberculosis and Y. pestis isolated from water and sewage. Journal of Applied Microbiology, 2004, 96, 1230-1236.	3.1	51
76	Bacteriophages and insertion sequences of Chromobacterium violaceum ATCC 12472. Genetics and Molecular Research, 2004, 3, 76-84.	0.2	6
77	Rapid viral metagenomics using SMART-9N amplification and nanopore sequencing. Wellcome Open Research, 0, 6, 241.	1.8	10
78	Levels of SARS-CoV-2 Lineage P.1 Neutralization by Antibodies Elicited after Natural Infection and Vaccination. SSRN Electronic Journal, 0, , .	0.4	23
79	Replicação do vÃŧus Oropouche em células de glioblastoma. , 0, , .		0
80	ENDOTHELIAL MODULATION DURING OROPOUCHE VIRUS INFECTION., 0,, .		0
81	Characterization of TIM and TAM receptors expression in placenta of pregnant women infected with Zika virus. , 0, , .		0
82	Detecção e quantificação da expressão de Interferon do tipo I e III em diversas regiões placentárias de gestantes infectadas por Zika vÃrus. , 0, , .		0