## Clive N Trueman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4787204/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A future for seafood point-of-origin testing using DNA and stable isotope signatures. Reviews in Fish<br>Biology and Fisheries, 2022, 32, 597-621.                                                                                                 | 4.9 | 11        |
| 2  | Stable isotopes demonstrate seasonally stable benthicâ€pelagic coupling as newly fixed nutrients are rapidly transferred through food chains in an estuarine fish community. Journal of Fish Biology, 2022, , .                                    | 1.6 | 6         |
| 3  | Deuterium in marine organic biomarkers: toward a new tool for quantifying aquatic mixotrophy. New<br>Phytologist, 2022, 234, 776-782.                                                                                                              | 7.3 | 4         |
| 4  | First measurements of field metabolic rate in wild juvenile fishes show strong thermal sensitivity but variations between sympatric ecotypes. Oikos, 2021, 130, 287-299.                                                                           | 2.7 | 19        |
| 5  | Toward a better understanding of fishâ€based contribution to ocean carbon flux. Limnology and<br>Oceanography, 2021, 66, 1639-1664.                                                                                                                | 3.1 | 106       |
| 6  | Traceability of the Norway Lobster Nephrops norvegicus in UK Shelf Seas: A Stable Isotope Approach.<br>Journal of Shellfish Research, 2021, 40, .                                                                                                  | 0.9 | 1         |
| 7  | Compound-Specific Stable Isotope Analysis of Amino Acids in Pelagic Shark Vertebrae Reveals Baseline,<br>Trophic, and Physiological Effects on Bulk Protein Isotope Records. Frontiers in Marine Science, 2021,<br>8, .                            | 2.5 | 5         |
| 8  | Isoscape Models of the Southern Ocean: Predicting Spatial and Temporal Variability in Carbon and<br>Nitrogen Isotope Compositions of Particulate Organic Matter. Global Biogeochemical Cycles, 2021, 35,<br>e2020GB006901.                         | 4.9 | 19        |
| 9  | Body condition of returning Atlantic salmon <i>Salmo salar</i> L. correlates with scale<br><scp>δ<sup>13</sup>C</scp> and <scp>δ<sup>15</sup>N</scp> content deposited at the last marine<br>foraging location. Journal of Fish Biology, 2021, , . | 1.6 | 0         |
| 10 | Deep-sea sponge aggregations (Pheronema carpenteri) in the Porcupine Seabight (NE Atlantic)<br>potentially degraded by demersal fishing. Progress in Oceanography, 2020, 183, 102189.                                                              | 3.2 | 15        |
| 11 | Fundamental questions and applications of sclerochronology: Community-defined research priorities. Estuarine, Coastal and Shelf Science, 2020, 245, 106977.                                                                                        | 2.1 | 15        |
| 12 | A modern method of multiple working hypotheses to improve inference in ecology. Royal Society Open Science, 2020, 7, 200231.                                                                                                                       | 2.4 | 4         |
| 13 | Predicting Geographic Ranges of Marine Animal Populations Using Stable Isotopes: A Case Study of<br>Great Hammerhead Sharks in Eastern Australia. Frontiers in Marine Science, 2020, 7, .                                                          | 2.5 | 6         |
| 14 | Evaluation of two lipid removal methods for stable carbon and nitrogen isotope analysis in whale tissue. Rapid Communications in Mass Spectrometry, 2020, 34, e8851.                                                                               | 1.5 | 6         |
| 15 | Stable isotopes suggest the location of marine feeding grounds of South European Atlantic salmon in<br>Greenland. ICES Journal of Marine Science, 2020, 77, 593-603.                                                                               | 2.5 | 10        |
| 16 | Quantifying carbon fluxes from primary production to mesopelagic fish using a simple food web model. ICES Journal of Marine Science, 2019, 76, 690-701.                                                                                            | 2.5 | 66        |
| 17 | Patterns of at-sea behaviour at a hybrid zone between two threatened seabirds. Scientific Reports, 2019, 9, 14720.                                                                                                                                 | 3.3 | 7         |
| 18 | Spatial models of carbon, nitrogen and sulphur stable isotope distributions (isoscapes) across a shelf sea: An <scp>INLA</scp> approach. Methods in Ecology and Evolution, 2019, 10, 518-531.                                                      | 5.2 | 36        |

CLIVE N TRUEMAN

| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Field metabolic rates of teleost fishes are recorded in otolith carbonate. Communications Biology, 2019, 2, 24.                                                                                       | 4.4 | 59        |
| 20 | Otolith δ13C values as a metabolic proxy: approaches and mechanical underpinnings. Marine and Freshwater Research, 2019, 70, 1747.                                                                    | 1.3 | 33        |
| 21 | Individual trophic specialization in juvenile European seabass: implications for the management of a commercially important species. ICES Journal of Marine Science, 2019, 76, 1784-1793.             | 2.5 | 4         |
| 22 | Isotopic Tracking of Marine Animal Movement. , 2019, , 137-172.                                                                                                                                       |     | 40        |
| 23 | Deepâ€water fisheries along the British Isles continental slopes: status, ecosystem effects and future perspectives. Journal of Fish Biology, 2019, 94, 981-992.                                      | 1.6 | 9         |
| 24 | Sympatric Atlantic puffins and razorbills show contrasting responses to adverse marine conditions during winter foraging within the North Sea. Movement Ecology, 2019, 7, 33.                         | 2.8 | 18        |
| 25 | Taylor's power law captures the effects of environmental variability on community structure: An example from fishes in the North Sea. Journal of Animal Ecology, 2019, 88, 290-301.                   | 2.8 | 11        |
| 26 | Sensitivity of δ13C values of seabird tissues to combined spatial, temporal and ecological drivers: A simulation approach. Journal of Experimental Marine Biology and Ecology, 2019, 512, 12-21.      | 1.5 | 11        |
| 27 | Combining simulation modeling and stable isotope analyses to reconstruct the last known movements of one of Nature's giants. PeerJ, 2019, 7, e7912.                                                   | 2.0 | 35        |
| 28 | A global perspective on the trophic geography of sharks. Nature Ecology and Evolution, 2018, 2, 299-305.                                                                                              | 7.8 | 95        |
| 29 | Teleost and elasmobranch eye lenses as a target for life-history stable isotope analyses. PeerJ, 2018, 6, e4883.                                                                                      | 2.0 | 30        |
| 30 | The preparation of jellyfish for stable isotope analysis. Marine Biology, 2017, 164, 1.                                                                                                               | 1.5 | 15        |
| 31 | Stable isotopeâ€based location in a shelf sea setting: accuracy and precision are comparable to<br>lightâ€based location methods. Methods in Ecology and Evolution, 2017, 8, 232-240.                 | 5.2 | 38        |
| 32 | Tracking, feather moult and stable isotopes reveal foraging behaviour of a critically endangered seabird during the nonâ€breeding season. Diversity and Distributions, 2017, 23, 130-145.             | 4.1 | 33        |
| 33 | DNA barcoding identifies a cosmopolitan diet in the ocean sunfish. Scientific Reports, 2016, 6, 28762.                                                                                                | 3.3 | 53        |
| 34 | Ecogeochemistry potential in deep time biodiversity illustrated using a modern deep-water case study.<br>Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150223. | 4.0 | 26        |
| 35 | Functional, size and taxonomic diversity of fish along a depth gradient in the deep sea. PeerJ, 2016, 4, e2387.                                                                                       | 2.0 | 37        |
| 36 | Emplacement of the Cabezo MarÃa lamproite volcano (Miocene, SE Spain). Bulletin of Volcanology, 2015, 77, 1.                                                                                          | 3.0 | 6         |

CLIVE N TRUEMAN

| #  | Article                                                                                                                                                                                                                      | IF               | CITATIONS                |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------|
| 37 | Quantifying physiological influences on otolith microchemistry. Methods in Ecology and Evolution, 2015, 6, 806-816.                                                                                                          | 5.2              | 172                      |
| 38 | Longitudinal and contemporaneous manganese exposure in apartheid-era South Africa: Implications for the past and future. International Journal of Paleopathology, 2015, 8, 1-9.                                              | 1.4              | 4                        |
| 39 | Ocean-scale connectivity and life cycle reconstruction in a deep-sea fish. Canadian Journal of<br>Fisheries and Aquatic Sciences, 2014, 71, 1312-1323.                                                                       | 1.4              | 24                       |
| 40 | Prey preferences of sympatric fin ( <i>Balaenoptera physalus</i> ) and humpback ( <i>Megaptera) Tj ETQq0 0 0 rg<br/>242-258.</i>                                                                                             | BT /Overl<br>1.8 | ock 10 Tf 50<br>44       |
| 41 | Listening In on the Past: What Can Otolith δ180 Values Really Tell Us about the Environmental History of Fishes?. PLoS ONE, 2014, 9, e108539.                                                                                | 2.5              | 64                       |
| 42 | An alternative suggestion for the Pliocene onset of major northern hemisphere glaciation based on<br>the geochemical provenance of North Atlantic Ocean ice-rafted debris. Quaternary Science Reviews,<br>2013, 75, 181-194. | 3.0              | 119                      |
| 43 | Looking for the archaeological signature in Australian Megafaunal extinctions. Quaternary<br>International, 2013, 285, 76-88.                                                                                                | 1.5              | 28                       |
| 44 | Trophic ecology of black scabbardfish, Aphanopus carbo in the NE Atlantic—Assessment through<br>stomach content and stable isotope analyses. Deep-Sea Research Part I: Oceanographic Research<br>Papers, 2013, 77, 1-10.     | 1.4              | 15                       |
| 45 | Analysis methods and reference concentrations of 12 minor and trace elements in fish blood plasma.<br>Journal of Trace Elements in Medicine and Biology, 2013, 27, 273-285.                                                  | 3.0              | 18                       |
| 46 | Chemical taphonomy of biomineralized tissues. Palaeontology, 2013, 56, 475-486.                                                                                                                                              | 2.2              | 61                       |
| 47 | Lead Exposure in Adult Males in Urban Transvaal Province, South Africa during the Apartheid Era.<br>PLoS ONE, 2013, 8, e58146.                                                                                               | 2.5              | 5                        |
| 48 | Stable isotopes reveal age-dependent trophic level and spatial segregation during adult marine feeding in populations of salmon. ICES Journal of Marine Science, 2012, 69, 1637-1645.                                        | 2.5              | 39                       |
| 49 | Stable isotopes reveal linkages between ocean climate, plankton community dynamics, and survival of<br>two populations of Atlantic salmon (Salmo salar). ICES Journal of Marine Science, 2012, 69, 784-794.                  | 2.5              | 27                       |
| 50 | Accounting for the effects of lipids in stable isotope ( <i>l´</i> <sup>13</sup> C and) Tj ETQq0 0 0 rgBT /Overlock<br>Communications in Mass Spectrometry, 2012, 26, 2745-2754.                                             | 10 Tf 50 1.5     | 227 Td ( <i>î<br/>78</i> |
| 51 | Fine-scale population structure in a deep-sea teleost (orange roughy, Hoplostethus atlanticus).<br>Deep-Sea Research Part I: Oceanographic Research Papers, 2011, 58, 627-636.                                               | 1.4              | 12                       |
| 52 | The 9th century BCE destruction layer at Tell es-Safi/Gath, Israel: integrating macro- and microarchaeology. Journal of Archaeological Science, 2011, 38, 3471-3482.                                                         | 2.4              | 53                       |
| 53 | Fractionation of rare earth elements within bone mineral: A natural cation exchange system.<br>Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 310, 124-132.                                                        | 2.3              | 61                       |
| 54 | A comparison of otolith microchemistry and otolith shape analysis for the study of spatial variation<br>in a deep-sea teleost, Coryphaenoides rupestris. Environmental Biology of Fishes, 2010, 89, 591-605.                 | 1.0              | 64                       |

4

CLIVE N TRUEMAN

| #  | Article                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Palaeoenvironmental implications of the ichnology and geochemistry of the Westbury Formation<br>(Rhaetian), Westbury-on-Severn, south-west England. Palaeontology, 2010, 53, 491-506.                                                                        | 2.2 | 19        |
| 56 | Protracted diagenetic alteration of REE contents in fossil bioapatites: Direct evidence from Lu–Hf<br>isotope systematics. Geochimica Et Cosmochimica Acta, 2010, 74, 6077-6092.                                                                             | 3.9 | 95        |
| 57 | Visualizing fossilization using laser ablation–inductively coupled plasma–mass spectrometry maps of trace elements in Late Cretaceous bones. Geology, 2009, 37, 511-514.                                                                                     | 4.4 | 95        |
| 58 | Geochemical study of vertebrate fossils from the Upper Cretaceous (Santonian) Csehbánya Formation<br>(Hungary): Evidence for a freshwater habitat of mosasaurs and pycnodont fish. Palaeogeography,<br>Palaeoclimatology, Palaeoecology, 2009, 280, 532-542. | 2.3 | 54        |
| 59 | Why do crystallinity values fail to predict the extent of diagenetic alteration of bone mineral?.<br>Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 266, 160-167.                                                                                  | 2.3 | 168       |
| 60 | Comparing rates of recrystallisation and the potential for preservation of biomolecules from the distribution of trace elements in fossil bones. Comptes Rendus - Palevol, 2008, 7, 145-158.                                                                 | 0.2 | 65        |
| 61 | Palaeoenvironments of vertebrates on the southern shore of Tethys: The nonmarine Early Cretaceous of Tunisia. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 243, 118-131.                                                                         | 2.3 | 49        |
| 62 | Juvenile life history of NE Atlantic orange roughy from otolith stable isotopes. Deep-Sea Research<br>Part I: Oceanographic Research Papers, 2007, 54, 1221-1230.                                                                                            | 1.4 | 44        |
| 63 | Forensic geology of bone mineral: geochemical tracers for post-mortem movement of bone remains.<br>Geological Society Special Publication, 2004, 232, 249-256.                                                                                               | 1.3 | 3         |
| 64 | Rare earth elements in Solnhofen biogenic apatite: geochemical clues to the palaeoenvironment.<br>Sedimentary Geology, 2003, 155, 109-127.                                                                                                                   | 2.1 | 71        |
| 65 | Diagenetic effects on the oxygen isotope composition of bones of dinosaurs and other vertebrates recovered from terrestrial and marine sediments. Journal of the Geological Society, 2003, 160, 895-901.                                                     | 2.1 | 47        |
| 66 | Dinosaurs and other fossil vertebrates from fluvial deposits in the Lower Cretaceous of southern<br>Tunisia. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 157, 227-246.                                                                          | 2.3 | 107       |
| 67 | A nesting trace with eggs for the Cretaceous theropod dinosaur <i>Troodon formosus</i> . Journal of Vertebrate Paleontology, 1999, 19, 91-100.                                                                                                               | 1.0 | 91        |
| 68 | Rare Earth Element Geochemistry and Taphonomy of Terrestrial Vertebrate Assemblages. Palaios, 1999, 14, 555.                                                                                                                                                 | 1.3 | 118       |
| 69 | Diagenetic Origin of REE in Vertebrate Apatite: A Reconsideration of Samoilov and Benjamini, 1996.<br>Palaios, 1997, 12, 495.                                                                                                                                | 1.3 | 4         |