
Chuan-Ling Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4786869/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrospinning one-dimensional surface-phosphorized CuCo/C nanofibers for enzyme-free glucose sensing. New Journal of Chemistry, 2022, 46, 11531-11539.	2.8	2
2	Rational Design of Core‧hell ZnTe@Nâ€Đoped Carbon Nanowires for High Gravimetric and Volumetric Alkali Metal Ion Storage. Advanced Functional Materials, 2021, 31, 2006425.	14.9	75
3	1D Coreâ^'Shell MOFs derived CoP Nanoparticles-Embedded N-doped porous carbon nanotubes anchored with MoS2 nanosheets as efficient bifunctional electrocatalysts. Chemical Engineering Journal, 2021, 419, 129977.	12.7	56
4	The controlled synthesis of Fe3C/Co/N-doped hierarchically structured carbon nanotubes for enhanced electrocatalysis. Applied Catalysis B: Environmental, 2020, 261, 118224.	20.2	43
5	1D MOFâ€Derived Nâ€Doped Porous Carbon Nanofibers Encapsulated with Fe ₃ C Nanoparticles for Efficient Bifunctional Electrocatalysis. European Journal of Inorganic Chemistry, 2020, 2020, 581-589.	2.0	16
6	Assembly of GO Nanosheets–Coated Zeolitic Imidazolate Frameworkâ€67 Nanocubes via Electrospinning and Their Derivatives for Enhanced Lithiumâ€lon Storage Performance. Energy Technology, 2020, 8, 2000209.	3.8	5
7	Facile Synthesis of Carbon-Coated Porous Sb ₂ Te ₃ Nanoplates with High Alkali Metal Ion Storage. ACS Applied Materials & Interfaces, 2019, 11, 29934-29940.	8.0	40
8	Selectively instant-response nanofibers with a fluorescent chemosensor toward phosgene in gas phase. Journal of Materials Chemistry C, 2019, 7, 1510-1517.	5.5	44
9	MoS2 nanoplates assembled on electrospun polyacrylonitrile-metal organic framework-derived carbon fibers for lithium storage. Nano Energy, 2019, 61, 104-110.	16.0	83
10	Non-covalent cross-linking to boost the stability and permeability of graphene-oxide-based membranes. Journal of Materials Chemistry A, 2019, 7, 8085-8091.	10.3	49
11	Electrospun metal-organic framework nanoparticle fibers and their derived electrocatalysts for oxygen reduction reaction. Nano Energy, 2019, 55, 226-233.	16.0	163
12	Hierarchically structured Co ₃ O ₄ @carbon porous fibers derived from electrospun ZIF-67/PAN nanofibers as anodes for lithium ion batteries. Journal of Materials Chemistry A, 2018, 6, 12962-12968.	10.3	120
13	Highly Stimuli-Responsive Au Nanorods/Poly(<i>N</i> -isopropylacrylamide) (PNIPAM) Composite Hydrogel for Smart Switch. ACS Applied Materials & Interfaces, 2017, 9, 24857-24863.	8.0	113
14	Fabrication of Zinc Oxide Composite Microfibers for Nearâ€Infraredâ€Lightâ€Mediated Photocatalysis. ChemCatChem, 2017, 9, 3611-3617.	3.7	17
15	Titanium Dioxide/Upconversion Nanoparticles/Cadmium Sulfide Nanofibers Enable Enhanced Fullâ€Spectrum Absorption for Superior Solar Light Driven Photocatalysis. ChemSusChem, 2016, 9, 1449-1454.	6.8	67
16	Nearâ€Infrared Photocatalytic Upconversion Nanoparticles/TiO ₂ Nanofibers Assembled in Large Scale by Electrospinning. Particle and Particle Systems Characterization, 2016, 33, 248-253.	2.3	98
17	Spraying functional fibres by electrospinning. Materials Horizons, 2016, 3, 266-269.	12.2	50
18	Tuning Gold Nanoparticle Aggregation through the Inhibition of Acid Phosphatase Bioactivity: A Plasmonic Sensor for Lightâ€Up Visual Detection of Arsenate (As ^V). ChemPlusChem, 2016, 81, 1147-1151.	2.8	15

CHUAN-LING ZHANG

#	Article	IF	CITATIONS
19	Hydrothermal-assisted crystallization for the synthesis of upconversion nanoparticles/CdS/TiO ₂ composite nanofibers by electrospinning. CrystEngComm, 2016, 18, 6013-6018.	2.6	12
20	Nanoparticles meet electrospinning: recent advances and future prospects. Chemical Society Reviews, 2014, 43, 4423.	38.1	534
21	Co-assembly of Au nanorods with Ag nanowires within polymer nanofiber matrix for enhanced SERS property by electrospinning. Nanoscale, 2012, 4, 5348.	5.6	89
22	Facile Fabrication of Gold Nanoparticles-Poly(vinyl alcohol) Electrospun Water-Stable Nanofibrous Mats: Efficient Substrate Materials for Biosensors. ACS Applied Materials & Interfaces, 2012, 4, 1963-1971.	8.0	109
23	Hierarchical Structures: Macroscopic‣cale Alignment of Ultralong Ag Nanowires in Polymer Nanofiber Mat and Their Hierarchical Structures by Magneticâ€Fieldâ€Assisted Electrospinning (Small) Tj ETQq1	1 0. <i>0</i> .8431	4 ፄgBT /Ove
24	Controlled Assemblies of Gold Nanorods in PVA Nanofiber Matrix as Flexible Free tanding SERS Substrates by Electrospinning. Small, 2012, 8, 648-653.	10.0	183
25	Nanoparticle Assemblies: Controlled Assemblies of Gold Nanorods in PVA Nanofiber Matrix as Flexible Free-Standing SERS Substrates by Electrospinning (Small 5/2012). Small, 2012, 8, 647-647.	10.0	29
26	Macroscopic‣cale Alignment of Ultralong Ag Nanowires in Polymer Nanofiber Mat and Their Hierarchical Structures by Magneticâ€Fieldâ€Assisted Electrospinning. Small, 2012, 8, 2936-2940.	10.0	70
27	Mesostructured Assemblies of Ultrathin Superlong Tellurium Nanowires and Their Photoconductivity. Journal of the American Chemical Society, 2010, 132, 8945-8952.	13.7	242