Jonathan Tennyson

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4786631/jonathan-tennyson-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

834 89 42,432 173 h-index g-index citations papers 896 47,310 3.5 7.51 ext. citations L-index avg, IF ext. papers

#	Paper	IF	Citations
834	Low energy inelastic electron scattering from carbon monoxide: II. Excitation of the b3⊞, j3⊞, B1⊞, C1⊞ and E1□Rydberg electronic states. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2022 , 55, 025201	1.3	O
833	A Method for the Variational Calculation of Hyperfine-Resolved Rovibronic Spectra of Diatomic Molecules <i>Journal of Chemical Theory and Computation</i> , 2022 ,	6.4	2
832	Highly accurate HF dimer ab initio potential energy surface Journal of Chemical Physics, 2022, 156, 16	4395	
831	Analysis of the accuracy of calculations using Duo and Level diatomic nuclear motion programs. Journal of Molecular Spectroscopy, 2022 , 111621	1.3	0
830	Partition sums for non-local thermodynamic equilibrium conditions for nine molecules of importance in planetary atmospheres. <i>Icarus</i> , 2022 , 378, 114947	3.8	1
829	Cross-sections for heavy atmospheres: H2O self-broadening. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2022 , 283, 108146	2.1	0
828	RAS techniques and instruments 2022 , 1, 1-2		
827	Cross-sections for heavy atmospheres: H2O continuum. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2021 , 278, 108013	2.1	2
826	Electron Scattering Cross-Section Calculations for Atomic and Molecular Iodine. <i>Atoms</i> , 2021 , 9, 103	2.1	1
825	ExoMol at 10. Astronomy and Geophysics, 2021, 62, 6.16-6.21	0.2	О
824	Targeted Cross-Section Calculations for Plasma Simulations. <i>Atoms</i> , 2021 , 9, 85	2.1	O
823	HELIOS-K 2.0 Opacity Calculator and Open-source Opacity Database for Exoplanetary Atmospheres. <i>Astrophysical Journal, Supplement Series</i> , 2021 , 253, 30	8	26
822	The efficient calculation of electron impact ionization cross sections with effective core potentials. <i>Journal of Chemical Physics</i> , 2021 , 154, 114104	3.9	5
821	Variational analysis of HF dimer tunneling rotational spectra using an ab initio potential energy surface. <i>Journal of Molecular Spectroscopy</i> , 2021 , 379, 111481	1.3	1
820	ExoMol molecular line lists IXLII. Rovibronic molecular line list for the low-lying states of NO. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 504, 5768-5777	4.3	4
819	An improved rovibrational linelist of formaldehyde, H212C16O. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2021 , 266, 107563	2.1	7
818	Electric quadrupole transitions in carbon dioxide. <i>Journal of Chemical Physics</i> , 2021 , 154, 211104	3.9	3

(2021-2021)

817	Theoretical rovibronic spectroscopy of the calcium monohydroxide radical (CaOH). <i>Journal of Chemical Physics</i> , 2021 , 154, 234302	3.9	1	
816	Cross Sections for Electron Collisions with H2O. <i>Journal of Physical and Chemical Reference Data</i> , 2021 , 50, 023103	4.3	5	
815	Synthesis of ab initio and effective Hamiltonian line lists for ozone. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2021 , 269, 107651	2.1	3	
814	Original Research by Young Twinkle Students (ORBYTS): ephemeris refinement of transiting exoplanets. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 504, 5671-5684	4.3	9	
813	A method for calculating temperature-dependent photodissociation cross sections and rates. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 16390-16400	3.6	6	
812	Ionisation of PF: absolute partial electron ionisation cross sections and the formation and reactivity of dication states. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 11424-11437	3.6	1	
811	Low-energy electron impact dissociative recombination and vibrational transitions of N2+. <i>Journal of Applied Physics</i> , 2021 , 129, 053303	2.5	2	
810	The ExoMolOP database: Cross sections and k-tables for molecules of interest in high-temperature exoplanet atmospheres. <i>Astronomy and Astrophysics</i> , 2021 , 646, A21	5.1	24	
809	A spectroscopic model for the low-lying electronic states of NO. <i>Journal of Chemical Physics</i> , 2021 , 154, 074112	3.9	4	
808	An experimentally-accurate and complete room-temperature infrared HCN line-list for the HITRAN database. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2021 , 270, 107666	2.1	1	
807	Determination of quantum labels based on projections of the total angular momentum on the molecule-fixed axis. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2021 , 270, 107716	2.1	1	
806	Reduced density matrix sampling: Self-consistent embedding and multiscale electronic structure on current generation quantum computers. <i>Physical Review Research</i> , 2021 , 3,	3.9	2	
805	A global line list for HDO between 0 and 35000′cml constructed using multiphoton spectra. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2021 , 271, 107694	2.1	1	
804	Cross Sections and Rate Coefficients for Vibrational Excitation of H2O by Electron Impact. <i>Atoms</i> , 2021 , 9, 62	2.1	2	
803	The HITRAN2020 molecular spectroscopic database. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2021 , 277, 107949	2.1	96	
802	The spectrum of ammonia near 0.793 lb. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2021 , 273, 107838	2.1	1	
801	The absorption spectrum of short-lived isotopic variant of water, H215O: Tentative detection at the Earth's atmosphere. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2021 , 276, 107929	2.1	0	
800	The update of the line positions and intensities in the line list of carbon dioxide for the HITRAN2020 spectroscopic database. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2021 , 276, 107896	2.1	2	

799	ExoMol line lists IXLI. High-temperature molecular line lists for the alkali metal hydroxides KOH and NaOH. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 502, 1128-1135	4.3	2
798	Why SF6 eats electrons: identifying high electrical strength molecules from their electron collision properties. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2021 , 54, 025202	1.3	O
797	Rovibronic spectroscopy of PN from first principles. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 220.	57 <u>3</u> 2620	662
796	Calculated electron impact ionisation fragmentation patterns. <i>Journal of Physics B: Atomic, Molecular and Optical Physics,</i> 2021 , 54, 235203	1.3	O
795	Electron dissociative attachement to ArH+, HD+, N2 + and CO2. <i>Journal of Physics: Conference Series</i> , 2020 , 1412, 172005	0.3	
794	A Decade with VAMDC: Results and Ambitions. <i>Atoms</i> , 2020 , 8, 76	2.1	22
793	MARVEL Analysis of the Measured High-resolution Rovibronic Spectra of the Calcium Monohydroxide Radical (CaOH). <i>Astrophysical Journal, Supplement Series</i> , 2020 , 248, 9	8	5
792	Empirical normal intensity distribution for overtone vibrational spectra of triatomic molecules. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020 , 252, 107084	2.1	6
791	Vibrationally resolved electron impact electronic excitation of BeH. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2020 , 53, 135202	1.3	
790	Low energy inelastic electron scattering from carbon monoxide: I. excitation of the a3 ab and A electronic states <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2020 ,	1.3	2
789	ExoMol line lists IXXXVIII. High-temperature molecular line list of silicon dioxide (SiO2). <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 495, 1927-1933	4.3	5
788	Ions in the Thermosphere of Exoplanets: Observable Constraints Revealed by Innovative Laboratory Experiments. <i>Astrophysical Journal</i> , 2020 , 895, 77	4.7	10
787	Molecular cross-sections for high-resolution spectroscopy of super-Earths, warm Neptunes, and hot Jupiters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 495, 224-237	4.3	20
786	ExoMol line lists IXXXIX. Ro-vibrational molecular line list for CO2. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 496, 5282-5291	4.3	22
7 ⁸ 5	W2020: A Database of Validated Rovibrational Experimental Transitions and Empirical Energy Levels of H216O. <i>Journal of Physical and Chemical Reference Data</i> , 2020 , 49, 033101	4.3	10
784	Empirical Line Lists in the ExoMol Database. <i>Atoms</i> , 2020 , 8, 7	2.1	14
783	The high-temperature rotation-vibration spectrum and rotational clustering of silylene (SiH2). Journal of Quantitative Spectroscopy and Radiative Transfer, 2020 , 246, 106929	2.1	9
782	Use of the complete basis set limit for computing highly accurate ab initio dipole moments. <i>Journal of Chemical Physics</i> , 2020 , 152, 024105	3.9	6

(2020-2020)

781	Empirical rovibrational energy levels of ammonia up to 7500 cmll. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2020 , 251, 107027	2.1	12	
78o	ExoMol molecular line lists IXXXVII. Spectra of acetylene. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 493, 1531-1545	4.3	22	
779	Recommended Pross sections for electron collisions with molecules. <i>European Physical Journal D</i> , 2020 , 74, 1	1.3	4	
778	Benchmark calculations of electron impact electronic excitation of the hydrogen molecule. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2020 , 53, 145204	1.3	12	
777	Vibrationally resolved NO dissociative excitation cross sections by electron impact. <i>Plasma Sources Science and Technology</i> , 2020 , 29, 05LT02	3.5	3	
776	Electron scattering studies of BF and BF2. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2020 , 53, 225203	1.3	1	
775	A semi-empirical potential energy surface and line list for H₂¹⁶0 extending into the near-ultraviolet. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 10015-10027	6.8	8	
774	Atomic and Molecular Scattering Applications in an Apache Airavata Science Gateway 2020,		1	
773	Original Research by Young Twinkle Students (Orbyts): Ephemeris Refinement of Transiting Exoplanets II. <i>Research Notes of the AAS</i> , 2020 , 4, 109	0.8	0	
772	Analysis of the first overtone bands of isotopologues of CO and SiO in stellar spectra. <i>Astronomy and Astrophysics</i> , 2020 , 633, A52	5.1	7	
771	Analysis of the TiO isotopologues in stellar optical spectra. <i>Astronomy and Astrophysics</i> , 2020 , 642, A77	5.1	4	
770	The W2020 Database of Validated Rovibrational Experimental Transitions and Empirical Energy Levels of Water Isotopologues. II. H217O and H218O with an Update to H216O. <i>Journal of Physical and Chemical Reference Data</i> , 2020 , 49, 043103	4.3	12	
769	Computational treatment of electron and photon collisions with atoms, ions, and molecules: the legacy of Philip G Burke. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2020 , 53, 192002	1.3	1	
768	Electron collisions with CO molecule: potential energy curves of higher lying COI resonant states. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020 , 53, 195202	1.3	2	
767	Electron collisions with molecular hydrogen from electronically excited states using the R-matrix method. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2020 , 53, 245203	1.3	3	
766	Dissociative electron attachment cross sections for ro-vibrationally excited NO molecule and N anion formation. <i>Plasma Sources Science and Technology</i> , 2020 , 29, 10LT01	3.5	3	
765	Identifiable Acetylene Features Predicted for Young Earth-like Exoplanets with Reducing Atmospheres Undergoing Heavy Bombardment. <i>Astrophysical Journal</i> , 2020 , 888, 21	4.7	12	
764	UKRmol+: A suite for modelling electronic processes in molecules interacting with electrons, positrons and photons using the R-matrix method. <i>Computer Physics Communications</i> , 2020 , 249, 10709	2 ^{4.2}	40	

763	ExoMol line lists IXL. Rovibrational molecular line list for the hydronium ion (H3O+). <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 497, 2340-2351	4.3	3
762	Electron Scattering Cross Sections for Anthracene and Pyrene. <i>Journal of Physical Chemistry A</i> , 2020 , 124, 7088-7100	2.8	3
761	Thirty years of H3+ astronomy. Reviews of Modern Physics, 2020 , 92,	40.5	13
760	The 2020 release of the ExoMol database: Molecular line lists for exoplanet and other hot atmospheres. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2020 , 255, 107228	2.1	54
759	An update to the MARVEL data set and ExoMol line list for 12C2. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 497, 1081-1097	4.3	10
75 ⁸	The infrared spectrum of PF3 and analysis of rotational energy clustering effect. <i>Molecular Physics</i> , 2020 , 118, e1581951	1.7	4
757	Calculated line lists for H216O and H218O with extensive comparisons to theoretical and experimental sources including the HITRAN2016 database. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2020 , 241, 106711	2.1	8
756	Erratum to Infrared absorption spectra of hot ammonia[J Quant Spectrosc Radiat Transf 203 (2017) 410-416]. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2020 , 245, 106870	2.1	1
755	Plasma polymerization of cyclopropylamine in a low-pressure cylindrical magnetron reactor: A PIC-MC study of the roles of ions and radicals. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2020 , 38, 033003	2.9	1
754	Fast species ranking for iterative species-oriented skeletal reduction of chemistry sets. <i>Plasma Sources Science and Technology</i> , 2020 , 29, 125024	3.5	1
753	ExoMol molecular line lists IXXXIII. The spectrum of Titanium Oxide. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 488, 2836-2854	4.3	84
75 ²	General mathematical formulation of scattering processes in atom-diatomic collisions in the RmatReact methodology. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2019 , 377, 20180409	3	3
75 ¹	Water vapour in the atmosphere of the habitable-zone eight-Earth-mass planet K2-18 b. <i>Nature Astronomy</i> , 2019 , 3, 1086-1091	12.1	127
75°	Accurate empirical rovibrational energies and transitions of HO. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 3473-3495	3.6	31
749	A variationally computed room temperature line list for AsH. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 3264-3277	3.6	7
748	MARVEL analysis of the measured high-resolution spectra of 14NH. <i>Journal of Molecular Spectroscopy</i> , 2019 , 362, 69-76	1.3	18
747	Spectroscopic line parameters of NO, NO2, and N2O for the HITEMP database. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2019 , 232, 35-53	2.1	32
746	Low temperature scattering with the R-matrix method: argon-argon scattering. <i>Molecular Physics</i> , 2019 , 117, 3158-3170	1.7	5

745	Theoretical study of the low-energy electron-collision cross sections of isomers HOOCl, HOClO and HClOO in gas phase. <i>Journal of Physics B: Atomic, Molecular and Optical Physics,</i> 2019 , 52, 165201	1.3	1
744	ExoMol line lists IXXXII. The rovibronic spectrum of MgO. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 486, 2351-2365	4.3	14
743	Reduced chemistries with the Quantemol database (QDB). <i>Plasma Science and Technology</i> , 2019 , 21, 064006	1.5	3
742	Hydrogen molecular ions: H, H and beyond. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2019 , 377, 20180395	3	4
74 ¹	Calculated cross sections for low energy electron collision with OH. <i>Plasma Sources Science and Technology</i> , 2019 , 28, 085013	3.5	7
740	ExoMol line list IXXXIV. A rovibrational line list for phosphinidene (PH) in its \$X, {}^3Sigma ^-\$ and \$a, {}^1Delta\$ electronic states. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 488, 2332-234	. 2 4·3	5
739	Angle-Resolved Electron Scattering from H_{2}O near 0°. Physical Review Letters, 2019, 123, 033401	7.4	5
738	Roadmap on photonic, electronic and atomic collision physics: II. Electron and antimatter interactions. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2019 , 52, 171002	1.3	14
737	Quantemol Electron Collisions (QEC): An Enhanced Expert System for Performing Electron Molecule Collision Calculations Using the R-Matrix Method. <i>Atoms</i> , 2019 , 7, 97	2.1	15
736	ExoMol molecular line lists XXXVI: X 200X 20 and A 200 IX 20 transitions of SH. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 490, 1652-1665	4.3	14
735	Astronomical Spectroscopy. Advanced Textbooks in Physics, 2019,	1	3
734	Electron Collisions with CO Molecule: An R-Matrix Study Using a Large Basis Set. <i>Springer Proceedings in Physics</i> , 2019 , 48-59	0.2	1
733	Low-Temperature Scattering with the R-Matrix Method: The Morse Potential. <i>Springer Proceedings in Physics</i> , 2019 , 257-273	0.2	2
732	The VoTe Room Temperature H216O Line List up to 25 000 cma. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2019, 127, 967-973	0.7	3
731	The ExoMol project: An update. <i>Proceedings of the International Astronomical Union</i> , 2019 , 15, 287-296	0.1	
730	ExoMol molecular line lists IXXXV. A rotation-vibration line list for hot ammonia. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 490, 4638-4647	4.3	41
729	Spectroscopy of YO from first principles. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 22794-22810	3.6	9
728	Cross Sections for Electron Collisions with NO, N2O, and NO2. <i>Journal of Physical and Chemical Reference Data</i> , 2019 , 48, 043104	4.3	12

727	R-matrix study for electron scattering of beryllium dihydride for fusion plasma. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2019 , 52, 065204	1.3	2
726	Analysis of gaseous ammonia (NH3) absorption in the visible spectrum of Jupiter - Update. <i>Icarus</i> , 2019 , 321, 572-582	3.8	9
725	A global potential energy surface for H3+. <i>Molecular Physics</i> , 2019 , 117, 1663-1672	1.7	11
724	Electron-impact excitation of diatomic hydride cations II: OH+ and SH+. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 476, 2931-2937	4.3	7
723	Downstream etching of silicon nitride using continuous-wave and pulsed remote plasma sources sustained in Ar/NF3/O2 mixtures. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2018 , 36, 021305	2.9	13
722	Analysis of the red and green optical absorption spectrum of gas phase ammonia. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2018 , 209, 224-231	2.1	8
721	Potential energy surface, dipole moment surface and the intensity calculations for the 10 μm, 5 μm and 3 μm bands of ozone. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2018 , 210, 127-1	3 5 .1	12
720	Original Research By Young Twinkle Students (ORBYTS): when can students start performing original research?. <i>Physics Education</i> , 2018 , 53, 015020	0.8	13
719	High-accuracy water potential energy surface for the calculation of infrared spectra. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2018 , 376,	3	20
718	An experimental water line list at 1950 K in the 6250B670 cmll region. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2018 , 205, 213-219	2.1	9
717	High Accuracy ab Initio Calculations of Rotational-Vibrational Levels of the HCN/HNC System. Journal of Physical Chemistry A, 2018 , 122, 1326-1343	2.8	7
716	Critical evaluation of measured rotational librational transitions of four sulphur isotopologues of S16O2. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2018 , 208, 152-163	2.1	25
715	MARVEL analysis of the measured high-resolution rovibrational spectra of C2H2. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2018 , 204, 42-55	2.1	35
714	ExoMol molecular line lists IXXVII. Spectra of C2H4. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 478, 3220-3232	4.3	29
713	The ExoMol Atlas of Molecular Opacities. <i>Atoms</i> , 2018 , 6, 26	2.1	36
712	Calculated electron impact dissociation cross sections for molecular chlorine (Cl2). <i>Plasma Sources Science and Technology</i> , 2018 , 27, 095008	3.5	7
711	EXOCROSS: a general program for generating spectra from molecular line lists. <i>Astronomy and Astrophysics</i> , 2018 , 614, A131	5.1	78
710	Marvel analysis of the measured high-resolution rovibrational spectra of H232S. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2018 , 218, 178-186	2.1	21

(2018-2018)

709	ExoMol line lists XXV: a hot line list for silicon sulphide, SiS. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 477, 1520-1527	4.3	10
708	Theoretical study of ArH+ dissociative recombination and electron-impact vibrational excitation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 479, 2415-2420	4.3	8
707	TWINKLE: a low earth orbit visible and infrared exoplanet spectroscopy observatory 2018,		4
706	The ARIEL space mission 2018 ,		8
705	Marvel Analysis of the Measured High-resolution Rovibronic Spectra of 90Zr16O. <i>Astrophysical Journal</i> , 2018 , 867, 33	4.7	20
704	ExoMol line lists XXXI: spectroscopy of lowest eights electronic states of C2. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 480, 3397-3411	4.3	20
703	Low-energy collisions between electrons and BeD+. <i>Plasma Sources Science and Technology</i> , 2018 , 27, 025015	3.5	5
702	ExoMol molecular line lists IXXVI: spectra of SH and NS. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 478, 270-282	4.3	15
701	A chemical survey of exoplanets with ARIEL. Experimental Astronomy, 2018, 46, 135-209	1.3	148
700	A Population Study of Gaseous Exoplanets. Astronomical Journal, 2018, 155, 156	4.9	144
700 699	A Population Study of Gaseous Exoplanets. <i>Astronomical Journal</i> , 2018 , 155, 156 Improved potential energy surface and spectral assignments for ammonia in the near-infrared region. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2018 , 219, 199-212	4·9 2.1	144
•	Improved potential energy surface and spectral assignments for ammonia in the near-infrared		
699	Improved potential energy surface and spectral assignments for ammonia in the near-infrared region. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2018 , 219, 199-212 Synthetic spectra of BeH, BeD and BeT for emission modeling in JET plasmas. <i>Journal of Physics B</i> :	2.1	21
699 698	Improved potential energy surface and spectral assignments for ammonia in the near-infrared region. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2018 , 219, 199-212 Synthetic spectra of BeH, BeD and BeT for emission modeling in JET plasmas. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2018 , 51, 185701 ExoMol line lists IXXIX. The rotation-vibration spectrum of methyl chloride up to 1200 K. <i>Monthly</i>	2.1	21
699 698 697	Improved potential energy surface and spectral assignments for ammonia in the near-infrared region. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2018 , 219, 199-212 Synthetic spectra of BeH, BeD and BeT for emission modeling in JET plasmas. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2018 , 51, 185701 ExoMol line lists IXXIX. The rotation-vibration spectrum of methyl chloride up to 1200 K. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 479, 3002-3010 ExoMol linelists XXVIII: the rovibronic spectrum of AlH. <i>Monthly Notices of the Royal Astronomical</i>	2.1 1.3 4.3	21 13 9
699 698 697	Improved potential energy surface and spectral assignments for ammonia in the near-infrared region. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 219, 199-212 Synthetic spectra of BeH, BeD and BeT for emission modeling in JET plasmas. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 185701 ExoMol line lists IXXIX. The rotation-vibration spectrum of methyl chloride up to 1200 K. Monthly Notices of the Royal Astronomical Society, 2018, 479, 3002-3010 ExoMol linelists XXVIII: the rovibronic spectrum of AlH. Monthly Notices of the Royal Astronomical Society, 2018, 479, 1401-1411 A new spectroscopically-determined potential energy surface and ab initio dipole moment surface	2.1 1.3 4.3	21 13 9 25
699 698 697 696	Improved potential energy surface and spectral assignments for ammonia in the near-infrared region. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 219, 199-212 Synthetic spectra of BeH, BeD and BeT for emission modeling in JET plasmas. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 185701 ExoMol line lists IXXIX. The rotation-vibration spectrum of methyl chloride up to 1200 K. Monthly Notices of the Royal Astronomical Society, 2018, 479, 3002-3010 ExoMol linelists XXVIII: the rovibronic spectrum of AlH. Monthly Notices of the Royal Astronomical Society, 2018, 479, 1401-1411 A new spectroscopically-determined potential energy surface and ab initio dipole moment surface for high accuracy HCN intensity calculations. Journal of Molecular Spectroscopy, 2018, 353, 40-53 ExoMol molecular line lists XXX: a complete high-accuracy line list for water. Monthly Notices of the	2.1 1.3 4.3 4.3	21 13 9 25 6

691	Treating linear molecule HCCH in calculations of rotation-vibration spectra. <i>Journal of Chemical Physics</i> , 2018 , 149, 014101	3.9	14
690	Molecular Spectroscopy for Exoplanets. Astrophysics and Space Science Library, 2018, 91-132	0.3	
689	Pressure-dependent water absorption cross sections for exoplanets and other atmospheres. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 187, 453-460	2.1	34
688	TIMEDELn: A programme for the detection and parametrization of overlapping resonances using the time-delay method. <i>Computer Physics Communications</i> , 2017 , 215, 137-148	4.2	8
687	G PU A ccelerated IN tensities MPI (GAIN-MPI): A new method of computing Einstein-A coefficients. <i>Computer Physics Communications</i> , 2017 , 214, 216-224	4.2	15
686	Theoretical resonant electron-impact vibrational excitation, dissociative recombination and dissociative excitation cross sections of ro-vibrationally excited BeH+ ion. <i>Plasma Physics and Controlled Fusion</i> , 2017 , 59, 045008	2	12
685	State-to-state chemistry and rotational excitation of CH in photon-dominated regions. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 469, 612-620	4.3	22
684	Total internal partition sums for 166 isotopologues of 51 molecules important in planetary atmospheres: Application to HITRAN2016 and beyond. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2017 , 203, 70-87	2.1	94
683	MARVEL Analysis of the Measured High-resolution Rovibronic Spectra of 48 Ti 16 O. <i>Astrophysical Journal, Supplement Series</i> , 2017 , 228, 15	8	42
682	Calculated cross sections for electron collisions with NF3, NF2and NF with applications to remote plasma sources. <i>Plasma Sources Science and Technology</i> , 2017 , 26, 065010	3.5	27
681	Electron\${mathrm{He}}_{2}^{+}\$ scattering calculation using the R-matrix method: resonant and bound states of He2. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2017 , 50, 115203	1.3	
680	Insights to scaling remote plasma sources sustained in NF3 mixtures. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2017 , 35, 031302	2.9	16
679	Accurate line intensities for water transitions in the infrared: Comparison of theory and experiment. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2017 , 203, 88-102	2.1	28
678	High-resolution absorption measurements of NH3 at high temperatures: 2100\(\textbf{B} 500 \) cm\(\textbf{I} \). Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 189, 60-65	2.1	9
677	Simulating electric field interactions with polar molecules using spectroscopic databases. <i>Scientific Reports</i> , 2017 , 7, 45068	4.9	6
676	Interaction of molecular nitrogen with free-electron-laser radiation. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 19794-19806	3.6	9
675	Recommended Ideal-Gas Thermochemical Functions for Heavy Water and its Substituent Isotopologues. <i>Journal of Physical and Chemical Reference Data</i> , 2017 , 46, 023104	4.3	17
674	Laboratory spectra of hot molecules: Data needs for hot super-Earth exoplanets. <i>Molecular Astrophysics</i> , 2017 , 8, 1-18	1.7	55

673	The ExoMol pressure broadening diet: H2 and He line-broadening parameters. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2017 , 203, 490-495	2.1	21
672	Room temperature linelists for CO2 asymmetric isotopologues with ab initio computed intensities. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 203, 265-281	2.1	27
671	Infrared absorption spectra of hot ammonia. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2017 , 203, 410-416	2.1	10
670	QDB: a new database of plasma chemistries and reactions. <i>Plasma Sources Science and Technology</i> , 2017 , 26, 055014	3.5	29
669	Cross Sections for Electron Collisions with Acetylene. <i>Journal of Physical and Chemical Reference Data</i> , 2017 , 46, 013106	4.3	13
668	ExoMol molecular line lists XIX: high-accuracy computed hot line lists for H218O and H217O. Monthly Notices of the Royal Astronomical Society, 2017, 466, 1363-1371	4.3	36
667	Room temperature line lists for CO2 symmetric isotopologues with ab initio computed intensities. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 189, 267-280	2.1	37
666	John Norman Murrell. 2 March 1932 I25 January 2016. <i>Biographical Memoirs of Fellows of the Royal Society</i> , 2017 , 63, 467-486	0.1	O
665	High-accuracy calculations of the rotation-vibration spectrum of \${{rm{H}}}_{3}^{+}\$. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2017 , 50, 232001	1.3	13
664	A hybrid line list for CH and hot methane continuum. Astronomy and Astrophysics, 2017, 605,	5.1	49
663	Molecular line shape parameters for exoplanetary atmospheric applications. <i>Journal of Physics:</i> Conference Series, 2017 , 810, 012010	0.3	4
662	Averaged electron collision cross sections for thermal mixtures of Palanine conformers in the gas phase. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2017 , 50, 195201	1.3	4
661	A parallel algorithm for Hamiltonian matrix construction in electron holecule collision calculations: MPI-SCATCI. <i>Computer Physics Communications</i> , 2017 , 221, 53-62	4.2	3
660	R-matrix study of electron impact excitation and dissociation of CH+ions. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2017 , 50, 175202	1.3	7
659	Lightning chemistry on Earth-like exoplanets. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 470, 187-196	4.3	41
658	The 2017 Plasma Roadmap: Low temperature plasma science and technology. <i>Journal Physics D:</i> Applied Physics, 2017 , 50, 323001	3	496
657	Absorption spectra of ammonia near 1 lb. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2017 , 203, 392-397	2.1	10
656	Highly accurate intensity factors of pure CO lines near 2 h. <i>Journal of Chemical Physics</i> , 2017 , 146, 24430	19 9	21

655	Room temperature line lists for deuterated water. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2017 , 203, 175-185	2.1	26
654	The HITRAN2016 molecular spectroscopic database. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2017 , 203, 3-69	2.1	1701
653	ExoMol line list IXXI. Nitric Oxide (NO). <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 470, 882-897	4.3	51
652	Low-energy collisions between electrons and BeH+: Cross sections and rate coefficients for all the vibrational states of the ion. <i>Atomic Data and Nuclear Data Tables</i> , 2017 , 115-116, 287-308	2	9
651	Quantum-Mechanical Calculations of Cross Sections for Electron Collisions With Atoms and Molecules. <i>Plasma Processes and Polymers</i> , 2017 , 14, 1600093	3.4	17
650	LXCat: an Open-Access, Web-Based Platform for Data Needed for Modeling Low Temperature Plasmas. <i>Plasma Processes and Polymers</i> , 2017 , 14, 1600098	3.4	111
649	ExoMol molecular line lists IXXIII. Spectra of PO and PS. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 472, 3648-3658	4.3	25
648	Ro-vibronic transition intensities for triatomic molecules from the exact kinetic energy operator; electronic spectrum for the C B <- X A transition in SO. <i>Journal of Chemical Physics</i> , 2017 , 147, 094305	3.9	5
647	Cross Sections for Electron Collisions with NF3. <i>Journal of Physical and Chemical Reference Data</i> , 2017 , 46, 043104	4.3	12
646	ExoMol molecular line lists IXX. A comprehensive line list for H3+. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 468, 1717-1725	4.3	25
645	R-matrix calculations of electron impact electronic excitation of BeH. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2017 , 50, 175201	1.3	12
644	ExoMol line lists IXXII. The rotation-vibration spectrum of silane up to 1200 K. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 471, 5025-5032	4.3	20
643	Detection of water vapour absorption around 363 nm in measured atmospheric absorption spectra and its effect on DOAS evaluations. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 1271-1295	6.8	30
642	MAX-DOAS measurements of HONO slant column densities during the MAD-CAT campaign: inter-comparison, sensitivity studies on spectral analysis settings, and error budget. <i>Atmospheric Measurement Techniques</i> , 2017 , 10, 3719-3742	4	25
641	Uncertainty estimates for theoretical atomic and molecular data. <i>Journal Physics D: Applied Physics</i> , 2016 , 49, 363002	3	46
640	The 2015 edition of the GEISA spectroscopic database. <i>Journal of Molecular Spectroscopy</i> , 2016 , 327, 31-72	1.3	267
639	Ab initio calculations to support accurate modelling of the rovibronic spectroscopy calculations of vanadium monoxide (VO). <i>Molecular Physics</i> , 2016 , 114, 3232-3248	1.7	12
638	ExoMol molecular line lists IXVII. The rotation libration spectrum of hot SO3. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 462, 4300-4313	4.3	26

(2016-2016)

637	Averaged electron collision cross sections for thermal mixtures of \$alpha \$-alanine conformers in the gas phase. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2016 , 49, 215201	1.3	4
636	Atomic and molecular data for spacecraft re-entry plasmas. <i>Plasma Sources Science and Technology</i> , 2016 , 25, 033004	3.5	54
635	ExoMol line lists IXV. A new hot line list for hydrogen peroxide. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 461, 1012-1022	4.3	19
634	The ExoMol database: Molecular line lists for exoplanet and other hot atmospheres. <i>Journal of Molecular Spectroscopy</i> , 2016 , 327, 73-94	1.3	280
633	Low-temperature chemistry using the R-matrix method. Faraday Discussions, 2016, 195, 31-48	3.6	7
632	ExoMol molecular line lists IXIV. The rotation libration spectrum of hot SO2. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 459, 3890-3899	4.3	47
631	Duo: A general program for calculating spectra of diatomic molecules. <i>Computer Physics Communications</i> , 2016 , 202, 262-275	4.2	98
630	Electron-impact excitation of diatomic hydride cations []. HeH+, CH+, ArH+. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 455, 3281-3287	4.3	30
629	ExoMol molecular line lists IXIII. The spectrum of CaO. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 456, 4524-4532	4.3	33
628	Radiative lifetimes and cooling functions for astrophysically important molecules. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2016 , 49, 044002	1.3	33
627	A room temperature CO2 line list with ab initio computed intensities. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2016 , 177, 31-42	2.1	84
626	The virtual atomic and molecular data centre (VAMDC) consortium. <i>Journal of Physics B: Atomic, Molecular and Optical Physics,</i> 2016 , 49, 074003	1.3	97
625	Predicted Land[g-factors for open shell diatomic molecules. <i>Journal of Molecular Spectroscopy</i> , 2016 , 330, 57-62	1.3	11
624	ExoMol line lists IXVIII. The high-temperature spectrum of VO. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 463, 771-793	4.3	80
623	Higher lying resonances in low-energy electron scattering with carbon monoxide*. <i>European Physical Journal D</i> , 2016 , 70, 1	1.3	11
622	Fundamentals: general discussion. <i>Faraday Discussions</i> , 2016 , 195, 139-169	3.6	2
621	Calculated low-energy electron-impact vibrational excitation cross sections for CO2molecule. <i>Plasma Sources Science and Technology</i> , 2016 , 25, 06LT02	3.5	12
620	EXPERIMENTAL ENERGY LEVELS AND PARTITION FUNCTION OF THE 12 C 2 MOLECULE. Astrophysical Journal, Supplement Series, 2016 , 224, 44	8	37

619	The current status of the W@DIS information system 2016 ,		2
618	Communication: Tunnelling splitting in the phosphine molecule. <i>Journal of Chemical Physics</i> , 2016 , 145, 091102	3.9	13
617	A highly accurate ab initio potential energy surface for methane. <i>Journal of Chemical Physics</i> , 2016 , 145, 104305	3.9	32
616	Perspective: Accurate ro-vibrational calculations on small molecules. <i>Journal of Chemical Physics</i> , 2016 , 145, 120901	3.9	48
615	Definitive Ideal-Gas Thermochemical Functions of the H216O Molecule. <i>Journal of Physical and Chemical Reference Data</i> , 2016 , 45, 043104	4.3	32
614	Theab initiocalculation of spectra of open shell diatomic molecules. <i>Journal of Physics B: Atomic, Molecular and Optical Physics,</i> 2016 , 49, 102001	1.3	47
613	A near infrared line list for NH 3: Analysis of a Kitt Peak spectrum after 35 years. <i>Journal of Molecular Spectroscopy</i> , 2016 , 325, 7-12	1.3	20
612	ExoMol molecular line lists IXVI. The rotation libration spectrum of hot H2S. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 460, 4063-4074	4.3	54
611	Carbon monoxide dissociative attachment and resonant dissociation by electron-impact. <i>Plasma Sources Science and Technology</i> , 2016 , 25, 01LT04	3.5	13
610	DETECTION OF AN ATMOSPHERE AROUND THE SUPER-EARTH 55 CANCRI E. <i>Astrophysical Journal</i> , 2016 , 820, 99	4.7	156
609	Radiative cooling of HO and its deuterated isotopologues. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 26268-26274	3.6	5
608	Dissociative recombination and vibrational excitation of BF+in low energy electron collisions. <i>Plasma Sources Science and Technology</i> , 2016 , 25, 055022	3.5	9
607	The science of ARIEL (Atmospheric Remote-sensing Infrared Exoplanet Large-survey) 2016,		44
606	A global ab initio dipole moment surface for methyl chloride. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2016 , 184, 100-110	2.1	13
605	Calculation of rotation-vibration energy levels of the ammonia molecule based on an ab initio potential energy surface. <i>Journal of Molecular Spectroscopy</i> , 2016 , 327, 21-30	1.3	23
604	The dipole moment surface for hydrogen sulfide H2S. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2015 , 161, 41-49	2.1	17
603	Accurate ab initio vibrational energies of methyl chloride. <i>Journal of Chemical Physics</i> , 2015 , 142, 24430	6 3.9	39
602	ExoMol line lists IVIII. A variationally computed line list for hot formaldehyde. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 448, 1704-1714	4.3	42

(2015-2015)

601	ExoMol molecular line lists IIX. The spectrum of AlO. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 449, 3613-3619	4.3	66
600	Cross Sections for Electron Collisions with Methane. <i>Journal of Physical and Chemical Reference Data</i> , 2015 , 44, 023101	4.3	48
599	Elastic scattering of low-energy electrons by CH3CN and CH3NC molecules. <i>European Physical Journal D</i> , 2015 , 69, 1	1.3	9
598	ExoMol line lists IVII. The rotation libration spectrum of phosphine up to 1500 K. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 446, 2337-2347	4.3	75
597	Non-equilibrium vibrational and electron energy distributions functions in atmospheric nitrogen ns pulsed discharges and 🛭 post-discharges: the role of electron molecule vibrational excitation scaling-laws. <i>Plasma Sources Science and Technology</i> , 2015 , 24, 035004	3.5	36
596	The calculated rovibronic spectrum of scandium hydride, ScH. <i>Molecular Physics</i> , 2015 , 113, 1998-2011	1.7	32
595	Calculated photoionization cross sections using Quantemol-N. <i>Japanese Journal of Applied Physics</i> , 2015 , 54, 06GA02	1.4	9
594	Dissociative recombination and vibrational excitation of CO+: model calculations and comparison with experiment. <i>Plasma Sources Science and Technology</i> , 2015 , 24, 035005	3.5	12
593	TAU-REX I: A NEXT GENERATION RETRIEVAL CODE FOR EXOPLANETARY ATMOSPHERES. Astrophysical Journal, 2015 , 802, 107	4.7	161
592	THE 2014 KIDA NETWORK FOR INTERSTELLAR CHEMISTRY. <i>Astrophysical Journal, Supplement Series</i> , 2015 , 217, 20	8	222
591	High-resolution absorption measurements of NH3 at high temperatures: 500\(\mathbb{Z}\)100 cm\(\mathbb{Z}\)1. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 167, 126-134	2.1	18
590	A variationally calculated room temperature line-list for H 2 O 2. <i>Journal of Molecular Spectroscopy</i> , 2015 , 318, 84-90	1.3	27
589	The status of spectroscopic data for the exoplanet characterisation missions. <i>Experimental Astronomy</i> , 2015 , 40, 563-575	1.3	23
588	High-Accuracy CO(2) Line Intensities Determined from Theory and Experiment. <i>Physical Review Letters</i> , 2015 , 114, 243001	7.4	91
587	\${mathcal{T}}\$-REx. II. RETRIEVAL OF EMISSION SPECTRA. <i>Astrophysical Journal</i> , 2015 , 813, 13	4.7	104
586	R-matrix calculation of bound and resonant states of BeH. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2015 , 48, 235202	1.3	4
585	A hybrid variational-perturbation calculation of the ro-vibrational spectrum of nitric acid. <i>Journal of Chemical Physics</i> , 2015 , 142, 094309	3.9	9
584	ExoMol molecular line lists IXI. The spectrum of nitric acid. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 452, 1702-1706	4.3	16

583	ExoMol molecular line lists IXII. Line lists for eight isotopologues of CS. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 454, 1931-1939	4.3	20
582	The EChO science case. <i>Experimental Astronomy</i> , 2015 , 40, 329-391	1.3	26
581	Computed bound and continuum electronic states of the nitrogen molecule. <i>EPJ Web of Conferences</i> , 2015 , 84, 03002	0.3	
580	MARVEL analysis of the measured high-resolution spectra of 14NH3. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2015 , 161, 117-130	2.1	60
579	Effective potential energy surface of HD16O for calculation of highly excited states of nB and 1 + nB types. <i>Atmospheric and Oceanic Optics</i> , 2015 , 28, 133-138	0.8	1
578	Methane and ammonia in the near-infrared spectra of late-T dwarfs. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 450, 454-480	4.3	45
577	ExoMol molecular line lists IX. The spectrum of sodium hydride. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 451, 634-638	4.3	24
576	Recent developments in R-matrix applications to molecular processes. <i>Journal of Physics:</i> Conference Series, 2015 , 635, 072058	0.3	
575	Dissociative electron attachment and electron-impact resonant dissociation of vibrationally excited O2 molecules. <i>Physical Review A</i> , 2015 , 91,	2.6	48
574	Hybrid variationalperturbation method for calculating ro-vibrational energy levels of polyatomic molecules. <i>Molecular Physics</i> , 2015 , 113, 1559-1575	1.7	19
573	ExoMol line lists III. An improved hot rotation-vibration line list for HCN and HNC. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 437, 1828-1835	4.3	101
572	Characterizing exoplanets. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2014 , 372, 20130375	3	11
571	A database of water transitions from experiment and theory (IUPAC Technical Report). <i>Pure and Applied Chemistry</i> , 2014 , 86, 71-83	2.1	65
57°	Dissociative recombination of N2+: An ab initio study. <i>Physical Review A</i> , 2014 , 90,	2.6	29
569	Study of the electronic and rovibronic structure of the X 🖫, A 🗓 and B 🖫 states of AlO. <i>Journal of Chemical Physics</i> , 2014 , 141, 144312	3.9	35
568	Electron-impact resonant vibrational excitation and dissociation processes involving vibrationally excited N2molecules. <i>Plasma Sources Science and Technology</i> , 2014 , 23, 065002	3.5	40
567	Low-energy electron collisions with the alanine molecule. European Physical Journal D, 2014, 68, 1	1.3	14
566	VibrationEotation transition dipoles from first principles. <i>Journal of Molecular Spectroscopy</i> , 2014 , 298, 1-6	1.3	53

(2013-2014)

565	High temperature partition functions and thermodynamic data for ammonia and phosphine. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014 , 142, 66-74	2.1	44
564	IUPAC critical evaluation of the rotational Dibrational spectra of water vapor. Part IV. Energy levels and transition wavenumbers for D216O, D217O, and D218O. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2014 , 142, 93-108	2.1	67
563	Communication: Visible line intensities of the triatomic hydrogen ion from experiment and theory. Journal of Chemical Physics, 2014 , 141, 241104	3.9	15
562	An R-matrix study of singlet and triplet continuum states of N2. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2014 , 47, 105204	1.3	21
561	Spectrum of hot methane in astronomical objects using a comprehensive computed line list. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 9379-83	11.5	83
560	ExoMol line lists IIV. The rotation ibration spectrum of methane up to 1500 K. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 440, 1649-1661	4.3	235
559	Recommended isolated-line profile for representing high-resolution spectroscopic transitions (IUPAC Technical Report). <i>Pure and Applied Chemistry</i> , 2014 , 86, 1931-1943	2.1	186
558	ExoMol molecular line lists V: the ro-vibrational spectra of NaCl and KCl. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 442, 1821-1829	4.3	38
557	Rate coefficients for dissociative attachment and resonant electron-impact dissociation involving vibrationally excited O2 molecules 2014 ,		6
556	Rotational transitions induced by collisions of HD+ ions with low-energy electrons. <i>Physical Review A</i> , 2014 , 90,	2.6	24
555	QED correction for H3+. <i>Physical Review A</i> , 2014 , 89,	2.6	18
554	Rotational spectrum of SO3 and theoretical evidence for the formation of sixfold rotational energy-level clusters in its vibrational ground state. <i>Journal of Chemical Physics</i> , 2014 , 140, 244316	3.9	17
553	R-matrix calculations of low-energy electron collisions with methane. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2014 , 47, 185203	1.3	21
552	Exomol molecular line lists IVI. A high temperature line list for phosphorus nitride. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 445, 1383-1391	4.3	25
551	Molecular Physics of Elementary Processes Relevant to Hypersonics: Electron-Molecule Collisions. <i>The Open Plasma Physics Journal</i> , 2014 , 7, 33-47		13
550	Calculation of rotation-vibration energy levels of the water molecule with near-experimental accuracy based on an ab initio potential energy surface. <i>Journal of Physical Chemistry A</i> , 2013 , 117, 963:	3- 4 3	60
549	Anab initiostudy of singlet and triplet Rydberg states of N2. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2013 , 46, 145102	1.3	34
548	Accurate bond dissociation energy of water determined by triple-resonance vibrational spectroscopy and ab initio calculations. <i>Chemical Physics Letters</i> , 2013 , 568-569, 14-20	2.5	54

547	Temperature-dependent molecular absorption cross sections for exoplanets and other atmospheres. <i>Icarus</i> , 2013 , 226, 1673-1677	3.8	87
546	A new relational database structure and online interface for the HITRAN database. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2013 , 130, 51-61	2.1	33
545	A computed room temperature line list for phosphine. <i>Journal of Molecular Spectroscopy</i> , 2013 , 288, 28-37	1.3	42
544	Vibrational transition moments of CH4 from first principles. <i>Journal of Molecular Spectroscopy</i> , 2013 , 291, 69-76	1.3	69
543	Analysis of a tritium enhanced water spectrum between 7200 and 7245 cm using new variational calculations. <i>Journal of Molecular Spectroscopy</i> , 2013 , 289, 35-40	1.3	9
542	The HITRAN2012 molecular spectroscopic database. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2013 , 130, 4-50	2.1	2394
541	Vibrationally and rotationally nonadiabatic calculations on H3+ using coordinate-dependent vibrational and rotational masses. <i>Physical Review A</i> , 2013 , 88,	2.6	36
540	An ab initio variationally computed room-temperature line list for (32)S(16)O3. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 10118-25	3.6	23
539	Re-analysis of ammonia spectra: Updating the HITRAN 14NH3 database. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2013 , 130, 260-272	2.1	47
538	Pressure broadening of water and carbon monoxide transitions by molecular hydrogen at high temperatures. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2013 , 116, 79-86	2.1	35
537	Terahertz spectroscopy of hydrogen sulfide. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2013 , 130, 341-351	2.1	36
536	Resonant vibrational-excitation cross sections and rate constants for low-energy electron scattering by molecular oxygen. <i>Plasma Sources Science and Technology</i> , 2013 , 22, 025001	3.5	35
535	Variational calculation of highly excited rovibrational energy levels of H2O2. <i>Journal of Physical Chemistry A</i> , 2013 , 117, 7367-77	2.8	14
534	IUPAC critical evaluation of the rotational librational spectra of water vapor, Part III: Energy levels and transition wavenumbers for H216O. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2013 , 117, 29-58	2.1	185
533	Cooling by H3(+) emission. <i>Journal of Physical Chemistry A</i> , 2013 , 117, 9770-7	2.8	29
532	Data structures for ExoMol: Molecular line lists for exoplanet and other atmospheres 2013,		16
531	ExoMol line lists III. The ro-vibrational spectrum of SiO. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 434, 1469-1475	4.3	75
530	CN excitation and electron densities in diffuse molecular clouds. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 435, 3541-3546	4.3	11

529	BLIND EXTRACTION OF AN EXOPLANETARY SPECTRUM THROUGH INDEPENDENT COMPONENT ANALYSIS. <i>Astrophysical Journal</i> , 2013 , 766, 7	4.7	61
528	Electron-impact vibrational excitation of vibrationally excited H2 molecules involving the resonant 2g+ Rydberg-excited electronic state. <i>Physical Review A</i> , 2013 , 88,	2.6	19
527	BASECOL2012: A collisional database repository and web service within the Virtual Atomic and Molecular Data Centre (VAMDC). <i>Astronomy and Astrophysics</i> , 2013 , 553, A50	5.1	159
526	Spectra of Hot Molecules of Astrophysical Importance: an Update on the ExoMol Project. <i>Proceedings of the International Astronomical Union</i> , 2013 , 9, 330-338	0.1	3
525	Ontology-Based Content Trust Support of Expert Information Resources in Quantitative Spectroscopy. <i>Communications in Computer and Information Science</i> , 2013 , 15-28	0.3	2
524	Line lists for H218O and H217O based on empirical line positions and ab initio intensities. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2012 , 113, 850-858	2.1	99
523	Self- and air-broadening coefficients of HD16O spectral lines. <i>Atmospheric and Oceanic Optics</i> , 2012 , 25, 27-34	0.8	7
522	Water in exoplanets. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2012 , 370, 2749-64	3	34
521	ExoMol line lists - I. The rovibrational spectrum of BeH, MgH and CaH in theX 2\(\textit{B}\)state. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 425, 34-43	4.3	59
520	EChO. Experimental Astronomy, 2012, 34, 311-353	1.3	82
519	Spectroscopy of H3+ based on a new high-accuracy global potential energy surface. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2012 , 370, 5014-27	3	32
518	NON-EQUILIBRIUM H 2 FORMATION IN THE EARLY UNIVERSE: ENERGY EXCHANGES, RATE COEFFICIENTS, AND SPECTRAL DISTORTIONS. <i>Astrophysical Journal, Supplement Series</i> , 2012 , 199, 16	8	23
517	UKRmol: a low-energy electron- and positron-molecule scattering suite. <i>European Physical Journal D</i> , 2012 , 66, 1	1.3	141
516	ExoMol: molecular line lists for exoplanet and other atmospheres. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 425, 21-33	4.3	300
515	Precision measurements and computations of transition energies in rotationally cold triatomic hydrogen ions up to the midvisible spectral range. <i>Physical Review Letters</i> , 2012 , 108, 023002	7.4	80
514	Calibration-quality adiabatic potential energy surfaces for H3(+) and its isotopologues. <i>Journal of Chemical Physics</i> , 2012 , 136, 184303	3.9	65
513	Electron-impact resonant vibration excitation cross sections and rate coefficients for carbon monoxide. <i>Plasma Sources Science and Technology</i> , 2012 , 21, 045005	3.5	23
512	R-matrix calculations of differential and integral cross sections for low-energy electron collisions with ethanol. <i>European Physical Journal D</i> , 2012 , 66, 1	1.3	14

511	Analysis of an 18O and D enhanced water spectrum and new assignments for HD18O and D218O in the near-infrared region (6000\(^1\)000cm\(^1\)) using newly calculated variational line lists. <i>Journal of Molecular Spectroscopy</i> , 2012 , 282, 1-8	1.3	16
510	Accurate variational calculations for line lists to model the vibrationBotation spectra of hot astrophysical atmospheres. <i>Wiley Interdisciplinary Reviews: Computational Molecular Science</i> , 2012 , 2, 698-715	7.9	48
509	Electron collisions with the BeH+ molecular ion in the R-matrix approach. <i>European Physical Journal D</i> , 2012 , 66, 1	1.3	12
508	Dissociative electron attachment to vibrationally excited H2 molecules involving the resonant Rydberg electronic state. <i>Chemical Physics</i> , 2012 , 398, 206-213	2.3	18
507	Calculated electron impact spin-coupled rotational cross-sections for 2S+ 1 linear molecules: CN as an example. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2012 , 45, 175202	1.3	6
506	A KINETIC DATABASE FOR ASTROCHEMISTRY (KIDA). <i>Astrophysical Journal, Supplement Series</i> , 2012 , 199, 21	8	339
505	Low-energy electron scattering with the purine bases of DNA/RNA using the R-matrix method. <i>Journal of Chemical Physics</i> , 2012 , 136, 024324	3.9	18
504	R-matrix study of elastic and inelastic electron collisions with cytosine and thymine. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2012 , 45, 175203	1.3	21
503	Electron collisions with the CN radical: bound states and resonances. <i>Journal of Physics B: Atomic, Molecular and Optical Physics,</i> 2012 , 45, 035204	1.3	20
502	ExoMol: molecular line lists for exoplanet and other atmospheres. <i>EAS Publications Series</i> , 2012 , 58, 24	3-2 <u>.4</u> 8	3
501	Dissociative electron attachment to H2molecules involving the2g+resonant Rydberg electronic state. <i>Journal of Physics: Conference Series</i> , 2012 , 388, 052012	0.3	
500	CHARACTERIZING THE ATMOSPHERES OF TRANSITING PLANETS WITH A DEDICATED SPACE TELESCOPE. <i>Astrophysical Journal</i> , 2012 , 746, 45	4.7	39
499	A dissociative electron attachment cross-section estimator. <i>Journal of Physics: Conference Series</i> , 2012 , 388, 012013	0.3	32
498	Electron impact vibrational excitation cross sections for CO. <i>Journal of Physics: Conference Series</i> , 2012 , 388, 052031	0.3	
497	Stark coefficients for highly excited rovibrational states of H2O. <i>Journal of Chemical Physics</i> , 2012 , 136, 244308	3.9	11
496	An adiabatic model for calculating overtone spectra of dimers such as (H(2)O)(2). <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2012 , 370, 2656-74	3	4
495	Global spectroscopy of the water monomer. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2012 , 370, 2728-48	3	33
494	CH+Energy Curves and Resonances using R-matrix with pseudo-states. <i>Journal of Physics:</i> Conference Series, 2012 , 388, 052002	0.3	

493	Electron collsions with the interstellar molecular radicals CN, C3N & C2H using the R-Matrix method. <i>Journal of Physics: Conference Series</i> , 2012 , 388, 052003	0.3	
492	Efficient diagonalization of the sparse matrices produced within the framework of the UKR-matrix molecular codes. <i>Journal of Physics: Conference Series</i> , 2012 , 388, 052042	0.3	
491	Resonances in Electron Collisions with Small Biomolecules Using the R-Matrix Method 2012 , 115-126		1
490	An upper limit for water dimer absorption in the 750 nm spectral region and a revised water line list. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 4273-4287	6.8	51
489	R-matrix with Pseudo-States (RMPS) method: application to CH+resonances curves. <i>Journal of Physics: Conference Series</i> , 2011 , 300, 012017	0.3	4
488	Electrontholecular cation reactive collisions: from channel mixing to competitive processes. Journal of Physics: Conference Series, 2011, 300, 012018	0.3	O
487	Rotational Cooling of HD+by Superelastic Collisions with Electrons. <i>Journal of Physics: Conference Series</i> , 2011 , 300, 012006	0.3	3
486	A global, high accuracy ab initio dipole moment surface for the electronic ground state of the water molecule. <i>Journal of Chemical Physics</i> , 2011 , 135, 034113	3.9	124
485	METHANE IN THE ATMOSPHERE OF THE TRANSITING HOT NEPTUNE GJ436B?. <i>Astrophysical Journal</i> , 2011 , 731, 16	4.7	96
484	A variationally computed line list for hot NH3. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 413, 1828-1834	4.3	241
483	Radiative cooling functions for primordial molecules. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 415, 487-493	4.3	39
482	Towards efficient refinement of molecular potential energy surfaces: Ammonia as a case study. Journal of Molecular Spectroscopy, 2011 , 268, 123-129	1.3	71
481	Analysis of high temperature ammonia spectra from 780 to 2100cm. <i>Journal of Molecular Spectroscopy</i> , 2011 , 269, 104-108	1.3	17
480	The 2009 edition of the GEISA spectroscopic database. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2011 , 112, 2395-2445	2.1	278
479	First-principles rotation Dibration spectrum of water above dissociation. <i>Chemical Physics Letters</i> , 2011 , 507, 48-51	2.5	27
478	Positron collisions with molecular hydrogen: cross sections and annihilation parameters calculated using theR-matrix with pseudo-states method. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2011 , 44, 035203	1.3	26
477	Positron collisions with acetylene calculated using theR-matrix with pseudo-states method. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2011 , 44, 195203	1.3	16
476	VAMDCIThe Virtual Atomic and Molecular Data Centrell. New Way to Disseminate Atomic and Molecular Datall AMDC Level 1 Release 2011 ,		20

475	Bound and continuum states of molecular anions C2Hand C3NaJournal of Physics B: Atomic, Molecular and Optical Physics, 2011 , 44, 045206	1.3	18
474	Electron collisions with BF+: bound and continuum states of BF. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2011 , 44, 055203	1.3	4
473	High Accuracy Rotation (Vibration Calculations on Small Molecules 2011,		3
472	Astronomical Spectroscopy 2011 ,		14
471	The R-matrix Calculations of Orientation and Coulomb Phase Effects in Electron Molecule (Re-)Collisions 2011 , 55-70		1
470	The discovery of a very cool, very nearby brown dwarf in the Galactic plane. <i>Monthly Notices of the Royal Astronomical Society: Letters</i> , 2010 , 408, L56-L60	4.3	104
469	Electron-impact rotational excitation of the carbon monosulphide (CS) molecule. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 403, 1409-1412	4.3	14
468	Water in the atmosphere of HD 209458b from 3.68 th IRAC photometric observations in primary transit. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 409, 963-974	4.3	88
467	Calculation of rate constants for vibrational and rotational excitation of the H+3ion by electron impact. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 ,	4.3	8
466	A computed line list for the H2D+ molecular ion. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , no-no	4.3	10
465	A high accuracy computed line list for the HDO molecule. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 402, 492-496	4.3	67
464	On the use of pseudostates to calculate molecular polarizabilities. <i>Journal of Physics B: Atomic, Molecular and Optical Physics,</i> 2010 , 43, 045101	1.3	23
463	Direct Monte Carlo simulation of the sympathetic cooling of trapped molecules by ultracold argon atoms. <i>New Journal of Physics</i> , 2010 , 12, 113002	2.9	14
462	R-matrix calculation of low-energy electron collisions with phosphoric acid. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2010 , 43, 235203	1.3	14
461	Theoretical methods for small-molecule ro-vibrational spectroscopy. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2010 , 43, 133001	1.3	61
460	Ro-vibrational spectra of C2H2 based on variational nuclear motion calculations. <i>Molecular Physics</i> , 2010 , 108, 1973-1990	1.7	17
459	Exploring extrasolar worlds: from gas giants to terrestrial habitable planets. <i>Faraday Discussions</i> , 2010 , 147, 369-77; discussion 379-403	3.6	16
458	H3+ cooling in planetary atmospheres. <i>Faraday Discussions</i> , 2010 , 147, 283-91; discussion 379-403	3.6	57

(2009-2010)

457	The science of EChO. Proceedings of the International Astronomical Union, 2010, 6, 359-370	0.1	3
456	The magnetic precursor of L1448-mm: excitation differences between ion and neutral fluids. <i>Astronomy and Astrophysics</i> , 2010 , 513, A64	5.1	4
455	Water dimer vibrationEotation tunnelling levels from vibrationally averaged monomer wavefunctions. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2010 , 111, 1262-1276	2.1	25
454	First-principles prediction and partial characterization of the vibrational states of water up to dissociation. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2010 , 111, 1043-1064	2.1	70
453	HITEMP, the high-temperature molecular spectroscopic database. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2010 , 111, 2139-2150	2.1	1159
452	Virtual atomic and molecular data centre. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2010 , 111, 2151-2159	2.1	144
451	Estimate of the J?J? dependence of water vapor line broadening parameters. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2010 , 111, 2308-2314	2.1	31
45 ⁰	IUPAC critical evaluation of the rotational librational spectra of water vapor. Part II. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2010 , 111, 2160-2184	2.1	151
449	Electron Pholecule collision calculations using the R-matrix method. <i>Physics Reports</i> , 2010 , 491, 29-76	27.7	352
448	R-band light curve of Comet 9P/Tempel 1 during the Deep Impact event. <i>Icarus</i> , 2010 , 205, 619-626	3.8	1
447	Electron collisions with the NO2 radical using the R-matrix method. <i>Physical Review A</i> , 2009 , 79,	2.6	15
446	Fundamental vibrational transitions of the H3e H4e+ and L7iH+ ions calculated without assuming the Born-Oppenheimer approximation and with including leading relativistic corrections. <i>Physical Review A</i> , 2009 , 79,	2.6	21
445	Electron and positron collisions with polar molecules: studies with the benchmark water molecule. <i>Physica Scripta</i> , 2009 , 80, 015301	2.6	41
444	Towards sympathetic cooling of large molecules: cold collisions between benzene and rare gas atoms. <i>New Journal of Physics</i> , 2009 , 11, 055029	2.9	24
443	Electron re-scattering from aligned linear molecules using theR-matrix method. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2009 , 42, 095101	1.3	12
442	R-matrix calculation of electron collisions with the BF+molecular ion. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2009 , 42, 105204	1.3	8
441	Water in the near-infrared spectrum of comet 8P/Tuttle. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 398, 1593-1600	4.3	22
440	Calculation of solar radiation atmospheric absorption with different H2O spectral line data banks. <i>Journal of Molecular Spectroscopy</i> , 2009 , 256, 41-44	1.3	12

439	The HITRAN 2008 molecular spectroscopic database. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2009 , 110, 533-572	2.1	2760
438	IUPAC critical evaluation of the rotational librational spectra of water vapor. Part Illinergy levels and transition wavenumbers for H217O and H218O. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2009 , 110, 573-596	2.1	166
437	Electron collision with the silicon monoxide (SiO) molecule using theR-matrix method. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2009 , 42, 095204	1.3	14
436	Is there anybody out there?. Contemporary Physics, 2009, 50, 657-659	3.3	
435	Rotational cooling of HD+ molecular ions by superelastic collisions with electrons. <i>Physical Review Letters</i> , 2009 , 102, 223202	7·4	23
434	A variationally computed T = 300 K line list for NH3. <i>Journal of Physical Chemistry A</i> , 2009 , 113, 11845-5	552.8	147
433	Sympathetic cooling by collisions with ultracold rare gas atoms, and recent progress in optical Stark deceleration. <i>Faraday Discussions</i> , 2009 , 142, 175-90; discussion 221-55	3.6	13
432	State-selective spectroscopy of water up to its first dissociation limit. <i>Journal of Chemical Physics</i> , 2009 , 131, 221105	3.9	51
431	R-matrix calculation of low-energy electron collisions with uracil. <i>Journal of Chemical Physics</i> , 2009 , 130, 164307	3.9	60
430	A modified potential for HO2 with spectroscopic accuracy. <i>Journal of Chemical Physics</i> , 2009 , 130, 1343	8 09 .9	10
429	Rotational excitation of interstellar molecular ions by electrons. <i>Journal of Physics: Conference Series</i> , 2009 , 192, 012016	0.3	6
428	Previously Unobserved Water Lines Detected in the Post-Impact Spectrum. <i>Globular Clusters - Guides To Galaxies</i> , 2009 , 3-10		
427	Shift of the centers of H2O absorption lines in the region of 1.06 fh. <i>Optics and Spectroscopy</i> (English Translation of Optika I Spektroskopiya), 2008 , 105, 25-31	0.7	6
426	The electronic bands of CrD, CrH, MgD and MgH: application to the deuterium test[]Monthly Notices of the Royal Astronomical Society, 2008, 386, 1338-1346	4.3	11
425	Spectrum of hot water in the 4750-13 000 cml wavenumber range (0.769-2.1 lh). <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 387, 1093-1098	4.3	32
424	A potential new method for determining the temperature of cool stars. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , ???-???	4.3	
423	A H13CN/HN13C linelist, model atmospheres and synthetic spectra for carbon stars. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 390, 143-148	4.3	40
422	A new ab initio ground-state dipole moment surface for the water molecule. <i>Journal of Chemical Physics</i> , 2008 , 128, 044304	3.9	75

(2008-2008)

Calculation of the O-H stretching vibrational overtone spectrum of the water dimer. <i>Journal of Physical Chemistry A</i> , 2008 , 112, 6305-12	2.8	57
On the treatment of long-range interactions in global potential energy surfaces for chemically bound systems. <i>Molecular Physics</i> , 2008 , 106, 1267-1273	1.7	7
Low and intermediate energy electron collisions with the Camolecular anion. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2008 , 41, 155201	1.3	19
Potential energy surface of HDO up to 25,000 cm-1. <i>Journal of Chemical Physics</i> , 2008 , 128, 044312	3.9	29
New ab initio potential energy surface and the vibration-rotation-tunneling levels of (H2O)2 and (D2O)2. <i>Journal of Chemical Physics</i> , 2008 , 128, 034312	3.9	97
Resonant States of H3+ and D2H+. <i>Journal of Chemical Physics</i> , 2008 , 128, 244312	3.9	21
Polarization effects in electron collisions with Li2: application of the molecularR-matrix method with pseudostates. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2008 , 41, 205204	1.3	25
Water line lists close to experimental accuracy using a spectroscopically determined potential energy surface for H2(16)O, H2(17)O, and H2(18)O. <i>Journal of Chemical Physics</i> , 2008 , 128, 224306	3.9	51
Excitations to the electronic continuum of 3HeT+in investigations of T2D decay experiments. Journal of Physics B: Atomic, Molecular and Optical Physics, 2008, 41, 125701	1.3	16
Global plasma simulations using dynamically generated chemical models. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2008 , 26, 865-869	2.9	7
Resonances in electron-impact electron detachment of C2 <i>Physical Review Letters</i> , 2008 , 100, 213202	7.4	17
Electron-impact study of NeF using the R-matrix method. <i>Physical Review A</i> , 2008 , 77,	2.6	30
Creating ultracold molecules by collisions with ultracold rare-gas atoms in an optical trap. <i>Physical Review A</i> , 2008 , 78,	2.6	23
On the chemistry and distribution of HOC\$mathsf{^+}\$ in M´82. <i>Astronomy and Astrophysics</i> , 2008 , 492, 675-684	5.1	40
Intracavity laser absorption spectroscopy of HDO between 12 145 and 13 160 cm ^a . <i>Journal of Molecular Spectroscopy</i> , 2008 , 248, 122-133	1.3	17
R-matrix calculations of low-energy electron alkane collisions. <i>International Journal of Mass Spectrometry</i> , 2008 , 271, 1-7	1.9	20
Water line parameters from refitted spectra constrained by empirical upper state levels: Study of the 9500¶4,500cm-1 region. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2008 , 109, 559-568	2.1	33
A line list of allowed and forbidden rotational transition intensities for water. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2008 , 109, 1219-1233	2.1	14
	Physical Chemistry A, 2008, 112, 6305-12 On the treatment of long-range interactions in global potential energy surfaces for chemically bound systems. Molecular Physics, 2008, 106, 1267-1273 Low and intermediate energy electron collisions with the C@molecular anion. Journal of Physics B: Atomic, Molecular and Optical Physics, 2008, 41, 155201 Potential energy surface of HDO up to 25,000 cm-1. Journal of Chemical Physics, 2008, 128, 044312 New ab initio potential energy surface and the vibration-rotation-tunneling levels of (H2O)2 and (D2O)2. Journal of Chemical Physics, 2008, 128, 034312 Resonant States of H3+ and D2H+. Journal of Chemical Physics, 2008, 128, 244312 Polarization effects in electron collisions with Li2: application of the molecularR-matrix method with pseudostates. Journal of Physics B: Atomic, Molecular and Optical Physics, 2008, 41, 205204 Water line lists close to experimental accuracy using a spectroscopically determined potential energy surface for H2(16)O, H2(17)O, and H2(18)O. Journal of Chemical Physics, 2008, 128, 224306 Excitations to the electronic continuum of3HeT+in investigations of T2Ddecay experiments. Journal of Physics B: Atomic, Molecular and Optical Physics, 2008, 41, 125701 Global plasma simulations using dynamically generated chemical models. Journal of Vocuum Science and Technology A: Vacuum, Surfaces and Films, 2008, 26, 865-869 Resonances in electron-impact electron detachment of C2 Physical Review A, 2008, 77, Creating ultracold molecules by collisions with ultracold rare-gas atoms in an optical trap. Physical Review A, 2008, 78, On the chemistry and distribution of HOC\$mathsf{^+}\$ in M32. Astronomy and Astrophysics, 2008, 492, 675-684 Intracavity laser absorption spectroscopy of HDO between 12 145 and 13 160 cmll. Journal of Mass Spectrometry, 2008, 271, 1-7 Water line parameters from refitted spectra constrained by empirical upper state levels: Study of the 950014,500cm-1 region. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 11, 11	A physical Chemistry A, 2008, 112, 6305-12 On the treatment of long-range interactions in global potential energy surfaces for chemically bound systems. Molecular Physics, 2008, 106, 1267-1273 Low and intermediate energy electron collisions with the CB molecular anion. Journal of Physics B: Atomic, Molecular and Optical Physics, 2008, 41, 155201 Potential energy surface of HDO up to 25,000 cm-1. Journal of Chemical Physics, 2008, 128, 044312 New ab initio potential energy surface and the vibration-rotation-tunneling levels of (H2O)2 and (D2O)2. Journal of Chemical Physics, 2008, 128, 034312 Resonant States of H3+ and D2H+. Journal of Chemical Physics, 2008, 128, 244312 39 Polarization effects in electron collisions with Li2: application of the molecularR-matrix method with pseudostates. Journal of Physics B: Atomic, Molecular and Optical Physics, 2008, 41, 205204 Water line lists close to experimental accuracy using a spectroscopically determined potential energy surface for H2(16)O, H2(17)O, and H2(18)O. Journal of Chemical Physics, 2008, 128, 224306 Excitations to the electronic continuum of 3HeT+in investigations of T2D decay experiments. Journal of Physics B: Atomic, Molecular and Optical Physics, 2008, 41, 125701 Global plasma simulations using dynamically generated chemical models. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2008, 26, 865-869 Resonances in electron-impact electron detachment of C2 Physical Review A, 2008, 77, 2.6 Electron-impact study of NeF using the R-matrix method. Physical Review A, 2008, 77, 2.6 Electron-impact study of NeF using the R-matrix method. Physical Review A, 2008, 77, 2.6 Intracavity laser absorption spectroscopy of HDO between 12 145 and 13 160 cmll. Journal of Mass 5, 265-684 Intracavity laser absorption spectroscopy of HDO between 12 145 and 13 160 cmll. Journal of Mass 5, 265-684 Intracavity laser absorption spectroscopy of HDO between 12 145 and 13 160 cmll. Journal of M35, 59-664 Intracavity laser absorption spectroscopy

403	Water vapor line width and shift calculations with accurate vibration lotation wave functions. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109, 1834-1844	2.1	22
402	Comparison between theoretical calculations and high-resolution measurements of pressure broadening for near-infrared water spectra. <i>Journal of Molecular Spectroscopy</i> , 2008 , 249, 86-94	1.3	45
401	Ab initio vibration of triterated isotopologues of. <i>Journal of Molecular Spectroscopy</i> , 2008 , 252, 37-40	1.3	2
400	Correlation polarization effects in electron/positron scattering from acetylene: A comparison of computational models. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2008 , 266, 425-434	1.2	23
399	Polarisation effects in low-energy positrontholecule scattering. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2008 , 266, 419-424	1.2	12
398	Electron re-scattering from H2 and CO2 using R-matrix techniques. <i>Journal of Modern Optics</i> , 2007 , 54, 1099-1106	1.1	5
397	Molecular line lists for modelling the opacity of cool stars. <i>Molecular Physics</i> , 2007 , 105, 701-714	1.7	17
396	Spectral analysis of high resolution near-infrared spectra of ultra cool dwarfs. <i>Astronomy and Astrophysics</i> , 2007 , 473, 257-264	5.1	15
395	The United Kingdom Infrared Telescope Deep Impact observations: Light curve, ejecta expansion rates and water spectral features. <i>Icarus</i> , 2007 , 187, 167-176	3.8	13
394	The United Kingdom Infrared Telescope Deep Impact observations: Light curve, ejecta expansion rates and water spectral features. <i>Icarus</i> , 2007 , 191, 371-380	3.8	16
393	Line parameter validation using ground-based solar occultation measurements: Water vapor access study. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2007 , 107, 349-359	2.1	1
392	Intracavity laser absorption spectroscopy of D2O between 11400 and 11900cmll. <i>Journal of Molecular Spectroscopy</i> , 2007 , 242, 1-9	1.3	15
391	MARVEL: measured active rotational librational energy levels. <i>Journal of Molecular Spectroscopy</i> , 2007 , 245, 115-125	1.3	157
390	Water vapour in the atmosphere of a transiting extrasolar planet. <i>Nature</i> , 2007 , 448, 169-71	50.4	394
389	Non-grey hydrogen burning evolution of subsolar mass Population III stars. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 374, 337-343	4.3	5
388	Evolutionary models for two hyper-iron-poor low-mass stars. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 377, 1520-1530	4.3	
387	Electron-impact rotational and hyperfine excitation of HCN, HNC, DCN and DNC. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 382, 840-848	4.3	39
386	HDO absorption spectrum above 11500cml: Assignment and dynamics. <i>Journal of Molecular Spectroscopy</i> , 2007 , 244, 87-101	1.3	35

(2006-2007)

385	Quantemol-N: an expert system for performing electron molecule collision calculations using the R-matrix method. <i>Journal of Physics: Conference Series</i> , 2007 , 86, 012001	0.3	95
384	Overtone spectroscopy of H2D+ and D2H+ using laser induced reactions. <i>Journal of Chemical Physics</i> , 2007 , 127, 154317	3.9	50
383	R-matrix calculation of the continuum states of carbon monoxide. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2007 , 40, 2135-2145	1.3	9
382	Electron collision with the HCN and HNC molecules using theR-matrix method. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2007 , 40, 1211-1223	1.3	20
381	Low-energy positron collisions with water: elastic and rotationally inelastic scattering. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2007 , 40, 3515-3524	1.3	33
380	WATERWAVES: wave particles dynamics on a complex triatomic potential. <i>Computer Physics Communications</i> , 2006 , 175, 41-51	4.2	5
379	The First Measurements of the Electron Density Enhancements Expected in C-Type Shocks. <i>Astrophysical Journal</i> , 2006 , 650, L135-L138	4.7	22
378	Near-threshold rotational excitation of molecular ions by electron impact. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2006 , 39, 4261-4273	1.3	30
377	Calculating the vibrationEotation spectrum of water. <i>Physica Scripta</i> , 2006 , 73, C53-C56	2.6	8
376	Advances and challenges in electrontholecule scattering physics A Report of the 14th International Symposium on Electrontholecule Collisions and Swarms. <i>Physica Scripta</i> , 2006 , 74, C7-C14	2.6	1
375	A wave packet method for treating nuclear dynamics on complex potentials. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2006 , 39, 4379-4392	1.3	11
374	CVRQD ab initio ground-state adiabatic potential energy surfaces for the water molecule. <i>Journal of Chemical Physics</i> , 2006 , 125, 204307	3.9	106
373	Low-energy electron collisions with C2using theR-matrix method. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2006 , 39, 2849-2860	1.3	25
372	R-matrix calculation of the potential energy curves for Rydberg states of carbon monoxide. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2006 , 39, 1485-1497	1.3	11
371	Reactive collisions between electrons and NO+ions: rate coefficient computations and relevance for the air plasma kinetics. <i>Plasma Sources Science and Technology</i> , 2006 , 15, 23-32	3.5	35
370	Molecular effects in investigations of tritium molecule ☐decay endpoint experiments. <i>Physical Review C</i> , 2006 , 73,	2.7	40
369	R-matrix calculation of differential cross sections for low-energy electron collisions with ground-state and electronically excited-state O2 molecules. <i>Physical Review A</i> , 2006 , 74,	2.6	12
368	Electron-impact rotational excitation of H3+: relevance for thermalization and dissociation dynamics. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2006 . 364, 3113-20	3	6

367	Ab initio spectroscopy of D2H+ near dissociation. <i>Molecular Physics</i> , 2006 , 104, 2801-2814	1.7	5
366	R-matrix calculation of electron collisions with electronically excited O2 molecules. <i>Physical Review A</i> , 2006 , 73,	2.6	30
365	Properties of high-lying vibrational states of the molecular ion. <i>Molecular Physics</i> , 2006 , 104, 115-125	1.7	17
364	Recent Advances in Calculating Molecular Collision Rates. AIP Conference Proceedings, 2006,	O	1
363	Influence of a new potential energy surface on the rotational (de)excitation of H\$_{mathsf 2}\$O by H\$_{mathsf 2}\$ at low temperature. <i>Astronomy and Astrophysics</i> , 2006 , 460, 323-329	5.1	65
362	The role of asymptotic vibrational states in H3+. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2006 , 364, 2903-14; discussion 2915-6	3	12
361	Electron Interaction Cross Sections for CF3I, C2F4, and CFx (x=1B) Radicals. <i>Journal of Physical and Chemical Reference Data</i> , 2006 , 35, 267-284	4.3	61
3 60	Improved HCN/HNC linelist, model atmospheres and synthetic spectra for WZ Cas. <i>Monthly Notices of the Royal Astronomical Society</i> , 2006 , 367, 400-406	4.3	96
359	A high-accuracy computed water line list. <i>Monthly Notices of the Royal Astronomical Society</i> , 2006 , 368, 1087-1094	4.3	700
358	Near infrared second overtone cw-cavity ringdown spectroscopy of D2H+ ions. <i>International Journal of Mass Spectrometry</i> , 2006 , 255-256, 170-176	1.9	21
357	Spectroscopically determined potential energy surfaces of the H216O, H217O, and H218O isotopologues of water. <i>Journal of Molecular Spectroscopy</i> , 2006 , 236, 216-223	1.3	58
356	Cavity ring-down spectroscopy of H217O in the range 16 570🛮 7 125 cm 🗗 . <i>Journal of Molecular Spectroscopy</i> , 2006 , 237, 63-69	1.3	10
355	Spectrum of hot water in the 2000월750cml frequency range. <i>Journal of Molecular Spectroscopy</i> , 2006 , 237, 115-122	1.3	36
354	Infrared emission spectrum of hot D2O. <i>Journal of Molecular Spectroscopy</i> , 2006 , 240, 112-119	1.3	39
353	Spectral energy distribution for GJ406. Astronomy and Astrophysics, 2006, 447, 709-717	5.1	26
352	Electron impact ionization of small molecules at intermediate energies: the molecularR-matrix with pseudostates method. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2005 , 38, 1607-1622	1.3	75
351	On equilibrium structures of the water molecule. <i>Journal of Chemical Physics</i> , 2005 , 122, 214305	3.9	148
350	A 3000 K laboratory emission spectrum of water. <i>Journal of Chemical Physics</i> , 2005 , 122, 074307	3.9	130

(2005-2005)

349	R-matrix theory of electron molecule scattering. <i>Molecular Physics</i> , 2005 , 103, 2537-2548	1.7	38
348	Near-Infrared Water Lines in V838 Monocerotis. <i>Astrophysical Journal</i> , 2005 , 627, L141-L144	4.7	23
347	Water Production Rates, Rotational Temperatures, and Spin Temperatures in Comets C/1999 H1 (Lee), C/1999 S4, and C/2001 A2. <i>Astrophysical Journal</i> , 2005 , 621, 537-544	4.7	95
346	Asymptotic vibrational states of the H3+molecular ion. <i>New Journal of Physics</i> , 2005 , 7, 196-196	2.9	23
345	Towards a model for the dissociative recombination of the CO2+ dication: states and couplings. <i>Journal of Physics: Conference Series</i> , 2005 , 4, 162-167	0.3	3
344	The HITRAN 2004 molecular spectroscopic database. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2005 , 96, 139-204	2.1	2346
343	Water line parameters for weak lines in the range 7400월600cm년. <i>Journal of Molecular Spectroscopy</i> , 2005 , 231, 23-27	1.3	32
342	Water vapour line assignments in the 9250½6000cm½ frequency range. <i>Journal of Molecular Spectroscopy</i> , 2005 , 233, 68-76	1.3	66
341	Fourier transform absorption spectra of H218O and H217O in the 3D Dand 4D olyad region. <i>Journal of Molecular Spectroscopy</i> , 2005 , 234, 1-9	1.3	24
340	Effective computation of matrix elements between polynomial basis functions. <i>Computer Physics Communications</i> , 2005 , 165, 10-14	4.2	8
339	Monodromy in the water molecule. <i>Chemical Physics Letters</i> , 2005 , 414, 193-197	2.5	63
338	Electron-molecule collisions at low and intermediate energies using the R-matrix method. <i>European Physical Journal D</i> , 2005 , 35, 231-237	1.3	15
337	Deuterated water: partition functions and equilibrium constants. <i>Monthly Notices of the Royal Astronomical Society</i> , 2005 , 356, 1123-1126	4.3	15
336	Calculated spectra for HeH+ and its effect on the opacity of cool metal-poor stars. <i>Monthly Notices of the Royal Astronomical Society</i> , 2005 , 357, 471-477	4.3	46
335	Carbon monoxide in low-mass dwarf stars. <i>Monthly Notices of the Royal Astronomical Society</i> , 2005 , 358, 105-112	4.3	36
334	Status of the physics of substellar objects project. <i>Astronomische Nachrichten</i> , 2005 , 326, 920-924	0.7	10
333	A full nine-dimensional potential-energy surface for hydrogen molecule-water collisions. <i>Journal of Chemical Physics</i> , 2005 , 122, 221102	3.9	75
332	Calculating energy levels of isomerizing tetra-atomic molecules. II. The vibrational states of acetylene and vinylidene. <i>Journal of Chemical Physics</i> , 2005 , 122, 064309	3.9	45

331	Continuous-wave cavity ringdown spectroscopy of the 8nu polyad of water in the 25,195-25,340 cm(-1) range. <i>Journal of Chemical Physics</i> , 2005 , 123, 154307	3.9	29
330	PartitionedR-matrix theory for molecules. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2004 , 37, 1061-1071	1.3	26
329	R-matrix calculation of low-energy electron collisions with LiH. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2004 , 37, 1689-1697	1.3	9
328	Continuum states of CO+. Journal of Physics B: Atomic, Molecular and Optical Physics, 2004, 37, 2011-20	31.3	5
327	Electron⊞+3collisions at intermediate energies. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2004 , 37, L343-L350	1.3	61
326	Analysis of hot D2O emission using spectroscopically determined potentials. <i>Journal of Chemical Physics</i> , 2004 , 120, 206-10	3.9	24
325	Elastic differential cross sections for the CFx(x= 1, 2, 3) radicals. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2004 , 37, 957-966	1.3	17
324	Electron-impact rotational excitation of water. <i>Monthly Notices of the Royal Astronomical Society</i> , 2004 , 347, 323-333	4.3	59
323	Deuterated hydrogen chemistry: partition functions, equilibrium constants and transition intensities for the H+3system. <i>Monthly Notices of the Royal Astronomical Society</i> , 2004 , 354, 161-168	4.3	37
322	Water production and release in Comet 153P/IkeyaIhang (C/2002 C1): accurate rotational temperature retrievals from hot-band lines near 2.9-fh. <i>Icarus</i> , 2004 , 168, 186-200	3.8	91
321	Cavity ring-down spectroscopy of H218O in the range 16570¶7120cm¶. <i>Journal of Molecular Spectroscopy</i> , 2004 , 226, 1-6	1.3	16
320	DVR3D: a program suite for the calculation of rotation libration spectra of triatomic molecules. <i>Computer Physics Communications</i> , 2004 , 163, 85-116	4.2	202
319	New vibrationEditation code for tetraatomic molecules exhibiting wide-amplitude motion: WAVR4. <i>Computer Physics Communications</i> , 2004 , 163, 117-131	4.2	47
318	Can ortho-para transitions for water be observed?. Journal of Chemical Physics, 2004, 120, 2732-9	3.9	60
317	Low-energy electron collisions with water: elastic and rotationally inelastic scattering. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2004 , 37, 801-807	1.3	55
316	The Role of HeH + in Cool Helium-rich White Dwarfs. <i>Astrophysical Journal</i> , 2004 , 617, L143-L146	4.7	29
315	Rovibrational relaxation model for H3+. New Journal of Physics, 2004, 6, 151-151	2.9	27
314	The Effect of the Electron Donor H+3on the PreMain-Sequence and Main-Sequence Evolution of Low-Mass, Zero-Metallicity Stars. <i>Astrophysical Journal</i> , 2004 , 600, 1025-1034	4.7	15

313	Electron collisions with the CF radicals using theR-matrix method. <i>Journal of Physics B: Atomic, Molecular and Optical Physics,</i> 2003 , 36, 2419-2432	1.3	30
312	Electron collisions with the CF3radical using theR-matrix method. <i>New Journal of Physics</i> , 2003 , 5, 155-1.	525 9	33
311	The climatic effects of water vapour. <i>Physics World</i> , 2003 , 16, 29-33	0.5	3
310	Monodromy of the LiNC/NCLi molecule. <i>Chemical Physics Letters</i> , 2003 , 382, 439-442	2.5	30
309	Water line intensities in the near-infrared and visible. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2003 , 82, 151-163	2.1	6
308	Emission spectrum of hot HDO below 4000 cma. Journal of Molecular Spectroscopy, 2003, 219, 132-135	1.3	39
307	Water line parameters for weak lines in the range 9000🛘 2700cm 🗗 . <i>Journal of Molecular Spectroscopy</i> , 2003 , 221, 99-105	1.3	16
306	Electron molecule collisions calculations using the R-matrix method. <i>Radiation Physics and Chemistry</i> , 2003 , 68, 65-72	2.5	11
305	VUV and low energy electron impact study of electronic state spectroscopy of CF3I. <i>International Journal of Mass Spectrometry</i> , 2003 , 223-224, 647-660	1.9	24
304	Rate coefficients for electron-impact rotational excitation of H3+ and H3O+. <i>Monthly Notices of the Royal Astronomical Society</i> , 2003 , 340, 468-472	4.3	23
303	The identification of HCN and HNC in carbon stars: model atmospheres, synthetic spectra and fits to observations in the 2.7월.0 h region. <i>Monthly Notices of the Royal Astronomical Society</i> , 2003 , 344, 1107-1118	4.3	30
302	High-accuracy ab initio rotation-vibration transitions for water. <i>Science</i> , 2003 , 299, 539-42	33.3	262
301	Spectroscopically determined potential energy surface of H216O up to 25 000 cma. <i>Journal of Chemical Physics</i> , 2003 , 118, 2124-2129	3.9	87
300	Rotation-vibration states of H3+ at dissociation. <i>Journal of Chemical Physics</i> , 2003 , 118, 3538-3542	3.9	14
299	Calculating energy levels of isomerizing tetra-atomic molecules. I. The rovibrational bound states of Ar2HF. <i>Journal of Chemical Physics</i> , 2003 , 118, 4896-4904	3.9	24
298	The Impact of New Water Vapor Spectroscopy on Satellite Retrievals 2003 , 259-272		2
297	Zero point energy of H\$_{mathsf{3}}^{vec +}\$ and its deuterated isotopomers. <i>Astronomy and Astrophysics</i> , 2003 , 406, 383-384	5.1	19
296	Opacity Data for HCN and HNC from a New Ab Initio Line List. <i>Astrophysical Journal</i> , 2002 , 578, 657-663	4.7	43

295	Low Energy Electron Collisions with Molecular Hydrogen. <i>Contributions To Plasma Physics</i> , 2002 , 42, 57	3- <u>5</u> .7ॄ7	2
294	Weak Line Water Vapor Spectra in the Region 13 200🛭 5 000 cm 🗗 . <i>Journal of Molecular Spectroscopy</i> , 2002 , 211, 169-178	1.3	43
293	Weak Line Water Vapor Spectrum in the 11 787🗓 3 554 cm 🗓 Region. <i>Journal of Molecular Spectroscopy</i> , 2002 , 215, 269-274	1.3	24
292	Absorption Spectrum of H218O in the Range 12 400¶4 520 cm¶. <i>Journal of Molecular Spectroscopy</i> , 2002 , 216, 77-80	1.3	19
291	Ab initio rotation-vibration energy levels of triatomics to spectroscopic accuracy. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2002 , 58, 663-72	4.4	32
290	Ab initio rotation-vibration spectra of HCN and HNC. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2002 , 58, 673-90	4.4	28
289	The metallicity of CM Draconis. Monthly Notices of the Royal Astronomical Society, 2002, 329, 290-300	4.3	18
288	Spectral analysis of water vapour in cool stars. <i>Monthly Notices of the Royal Astronomical Society</i> , 2002 , 330, 675-684	4.3	40
287	GTOBAS: fitting continuum functions with Gaussian-type orbitals. <i>Computer Physics Communications</i> , 2002 , 144, 224-241	4.2	210
286	Higher-order relativistic corrections to the vibrationExtation levels of H2S. <i>Chemical Physics Letters</i> , 2002 , 361, 121-128	2.5	10
285	Calculating quasi-bound rotation-vibrational states of HOCl using massively parallel computers. <i>Chemical Physics Letters</i> , 2002 , 366, 449-457	2.5	25
284	Note on The impact of new water vapour spectral line parameters on the calculation of atmospheric absorption(by Wenyi Zhong et al. (July A, 2001, 127, 1615(1626). <i>Quarterly Journal of the Royal Meteorological Society</i> , 2002 , 128, 1387-1388	6.4	9
283	Calculations of rotation libration states with the z axis perpendicular to the plane: High accuracy results for H3+. <i>Journal of Chemical Physics</i> , 2002 , 116, 7564-7573	3.9	12
282	Beyond the Born Oppenheimer approximation: High-resolution overtone spectroscopy of H2D+ and D2H+. <i>Journal of Chemical Physics</i> , 2002 , 116, 6146-6158	3.9	30
281	Temperature dependent partition functions and equilibrium constant for HCN and HNC. <i>Journal of Chemical Physics</i> , 2002 , 117, 11239-11243	3.9	35
280	Vibrational and rotational cooling of H3+. <i>Physical Review A</i> , 2002 , 66,	2.6	56
279	Variational calculations of vibrational energy levels for XY4 molecules: 2. Bending states of methane. <i>Molecular Physics</i> , 2002 , 100, 1623-1632	1.7	22
278	R-matrix calculations for polyatomic molecular ions: electron scattering by H3+and H3O+. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2002 , 35, 1865-1873	1.3	17

(2001-2002)

277	Calculated rates for the electron impact dissociation of molecular hydrogen: mixed isotopomers and scaling laws. <i>Plasma Physics and Controlled Fusion</i> , 2002 , 44, 2217-2230	2	14
276	Electron-impact rotational excitation of symmetric-top molecular ions. <i>Journal of Physics B: Atomic, Molecular and Optical Physics,</i> 2002 , 35, 3945-3956	1.3	19
275	Electron collisions with the CF2radical using theR-matrix method. <i>Journal of Physics B: Atomic, Molecular and Optical Physics,</i> 2002 , 35, 1583-1591	1.3	40
274	Calculated rates for the electron impact dissociation of molecular hydrogen, deuterium and tritium. <i>Plasma Physics and Controlled Fusion</i> , 2002 , 44, 1263-1276	2	60
273	Laboratory Spectroscopy of Hot Water near 2 Microns and Sunspot Spectroscopy in the H-Band Region. <i>Astrophysical Journal</i> , 2002 , 577, 496-500	4.7	25
272	Electron impact dissociative excitation of water within the adiabatic nuclei approximation. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2002 , 35, 543-555	1.3	72
271	Dipole moments of highly vibrationally excited water. <i>Science</i> , 2002 , 297, 993-5	33.3	36
270	Variational calculations of vibrational energy levels for XY4 molecules 1. Stretching states. <i>Molecular Physics</i> , 2002 , 100, 1615-1622	1.7	16
269	Low Energy Electron Collisions with Molecular Hydrogen 2002 , 42, 573		O
268	Electron-impact rotational excitation of linear molecular ions. <i>Monthly Notices of the Royal Astronomical Society</i> , 2001 , 325, 443-448	4.3	70
267	Spectroscopy of H3+ and its impact on astrophysics. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2001 , 57, 661-7	4.4	9
266	The impact of new water vapour spectral line parameters on the calculation of atmospheric absorption. <i>Quarterly Journal of the Royal Meteorological Society</i> , 2001 , 127, 1615-1626	6.4	22
265	Cavity-Ring-Down Spectroscopy on Water Vapor in the Range 555-604 nm. <i>Journal of Molecular Spectroscopy</i> , 2001 , 205, 117-121	1.3	22
264	The Water Vapor Spectrum in the Region 8600-15 000 cm(-1): Experimental and Theoretical Studies for a New Spectral Line Database. <i>Journal of Molecular Spectroscopy</i> , 2001 , 208, 32-42	1.3	79
263	The Water Vapor Spectrum in the Region 8600-15 000 cm(-1): Experimental and Theoretical Studies for a New Spectral Line Database. <i>Journal of Molecular Spectroscopy</i> , 2001 , 208, 43-50	1.3	58
262	The Visible and Near Ultraviolet Rotation Vibration Spectrum of HOD. <i>Journal of Molecular Spectroscopy</i> , 2001 , 209, 165-168	1.3	16
261	Emission Spectrum of Hot HDO in the 380🛭 190 cm 🖺 Region. <i>Journal of Molecular Spectroscopy</i> , 2001 , 210, 28-40	1.3	15
260	Ab initio global potential, dipole, adiabatic, and relativistic correction surfaces for the HCNHNC system. <i>Journal of Chemical Physics</i> , 2001 , 115, 3706-3718	3.9	96

259	Two-electron relativistic corrections to the potential energy surface and vibrationEotation levels of water. <i>Chemical Physics Letters</i> , 2001 , 344, 413-420	2.5	35
258	Differential cross sections for near-threshold electron impact dissociation of molecular hydrogen. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2001 , 34, 2935-2949	1.3	25
257	Electron collisions with Cl2O using theR-matrix method. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2001 , 34, 2807-2821	1.3	19
256	Electron collisions with OClO using theR-matrix method. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2001 , 34, 4041-4052	1.3	19
255	Ab initio rovibrational spectroscopy of hydrogen sulfide. <i>Journal of Chemical Physics</i> , 2001 , 115, 1229-1	12 42)	29
254	Estimation of Lamb-shift effects for molecules: Application to the rotation-vibration spectra of water. <i>Physical Review A</i> , 2001 , 63,	2.6	76
253	Dream or Reality: Complete Basis Set Full Configuration Interaction Potential Energy Hypersurfaces 2001 , 317-339		47
252	Experimental Energy Levels of the Water Molecule. <i>Journal of Physical and Chemical Reference Data</i> , 2001 , 30, 735-831	4.3	214
251	The impact of new water vapour spectral line parameters on the calculation of atmospheric absorption 2001 , 127, 1615		2
250	The role of H3+in planetary atmospheres. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2000 , 358, 2485-2502	3	95
249	Using Laboratory Spectroscopy to Identify Lines in theK- andL-Band Spectrum of Water in a Sunspot. <i>Astrophysical Journal</i> , 2000 , 530, 994-998	4.7	26
248	The ground-state potential energy surface of water: barrier to linearity and its effect on the vibrationEotation levels. <i>Chemical Physics Letters</i> , 2000 , 317, 365-371	2.5	31
247	Bound and quasi-bound rotation-vibrational states using massively parallel computers. <i>Computer Physics Communications</i> , 2000 , 128, 434-445	4.2	20
246	Infrared spectroscopic studies of the jovian ionsophere and aurorae. <i>Advances in Space Research</i> , 2000 , 26, 1477-1488	2.4	7
245	New studies of the visible and near-infrared absorption by water vapour and some problems with the HITRAN database. <i>Geophysical Research Letters</i> , 2000 , 27, 3703-3706	4.9	43
244	Relative equilibria of D2H + and H2D+. <i>Molecular Physics</i> , 2000 , 98, 295-307	1.7	19
243	Accurate partition function and thermodynamic data for water. <i>Journal of Chemical Physics</i> , 2000 , 113, 9766-9771	3.9	100
242	Dissociative recombination of NO+: calculations and comparison with experiment. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2000 , 33, 4849-4861	1.3	56

241	H 3 + near dissociation: theoretical progress. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2000 , 358, 2419-2432	3	14
240	The near ultraviolet rotation-vibration spectrum of water. <i>Journal of Chemical Physics</i> , 2000 , 113, 1546-	1 <u>\$</u> .552	34
239	An accurate, global, ab initio potential energy surface for the H+ 3 molecule. <i>Molecular Physics</i> , 2000 , 98, 261-273	1.7	41
238	Electron collisions with ClO using theR-matrix method. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2000 , 33, L677-L684	1.3	36
237	An accurate, global, ab initio potential energy surface for the H + 3 molecule. <i>Molecular Physics</i> , 2000 , 98, 261-273	1.7	12
236	Relative equilibria of D 2 H + and H 2 D +. <i>Molecular Physics</i> , 2000 , 98, 295-307	1.7	5
235	Near-threshold electron impact dissociation of H2within the adiabatic nuclei approximation. <i>New Journal of Physics</i> , 1999 , 1, 2-2	2.9	40
234	Electron collisions with polyatomic molecules using the Rhatrix method. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 1999 , 357, 1161-1173	3	55
233	Anab initiocalculation of electron impact vibrational excitation of NO+. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 1999 , 32, 4753-4762	1.3	10
232	Ab initio calculation of the rotation libration energy levels of H3+ and its isotopomers to spectroscopic accuracy. <i>Journal of Chemical Physics</i> , 1999 , 110, 5056-5064	3.9	130
231	Spectroscopy from first principles: a breakthrough in water line assignments. <i>Spectrochimica Acta-Part A: Molecular and Biomolecular Spectroscopy</i> , 1999 , 55, 659-693	4.4	23
230	Electron-impact rotational excitation of CH+. <i>Monthly Notices of the Royal Astronomical Society</i> , 1999 , 306, 473-478	4.3	30
229	Comment on 'Potential energy surfaces of excited states of H2II(Chem. Phys. Lett. 285 (1998) 114II 20). Chemical Physics Letters, 1999 , 308, 532-536	2.5	20
228	Hot Bands of Water up to 6nu2-5nu2 in the 933-2500 cm-1 Region. <i>Journal of Molecular Spectroscopy</i> , 1999 , 193, 118-136	1.3	35
227	Vibrational excitation in low-energy electron scattering by H2 molecules physisorbed on a metal surface. <i>Surface Science</i> , 1999 , 443, 57-68	1.8	9
226	The near infrared, visible, and near ultraviolet overtone spectrum of water. <i>Journal of Chemical Physics</i> , 1999 , 111, 2444-2450	3.9	101
225	Quantum monodromy in the spectrum of H2O and other systems: new insight into the level structure of quasi-linear molecules. <i>Molecular Physics</i> , 1999 , 96, 371-379	1.7	78
224	Symmetry and structure of rotating H3+. <i>Journal of Chemical Physics</i> , 1999 , 111, 140-150	3.9	24

223	H2Quadrupole and documentclass{aastex} usepackage{amsbsy} usepackage{amsfonts} usepackage{amssymb} usepackage{bm} usepackage{mathrsfs} usepackage{pifont} usepackage{stmaryrd} usepackage{textcomp} usepackage{portland,xspace} usepackage{amsmath,amsxtra} usepackage[OT2,OT1]{fontenc} newcommandcyr{	4.7	39
222	Rates for the Electron Impact Dissociation of Molecular Hydrogens. Astrophysical Journal, 1999, 513, L16 DeclareTextFontCommand{textcyr}{cyr} pagestyle{empty} DeclareMathSizes{10}. Astrophysical	47 ₄ 1 5 15	0 32
221	Journal, 1999 , 524, 1059-1083 Molecular Rotation-Vibration Calculations using Massively Parallel Computers 1999 , 307-314		
220	The UK molecular R-matrix codes. <i>Computer Physics Communications</i> , 1998 , 114, 120-128	4.2	171
219	TIMEDEL: A program for the detection and parameterization of resonances using the time-delay matrix. <i>Computer Physics Communications</i> , 1998 , 114, 236-242	4.2	31
218	A non-adiabatic calculation of NO Rydberg states above several ionisation thresholds. <i>Chemical Physics Letters</i> , 1998 , 285, 105-113	2.5	6
217	Relativistic correction to the potential energy surface and vibration-rotation levels of water. <i>Chemical Physics Letters</i> , 1998 , 293, 317-323	2.5	54
216	Rotation-vibration calculations using massively parallel computers. <i>Computer Physics Communications</i> , 1998 , 108, 29-37	4.2	12
215	ROTIONS: A program for the calculation of rotational excitation cross sections in electron holecular ion collisions. <i>Computer Physics Communications</i> , 1998 , 114, 129-141	4.2	21
214	Water Vapor Line Assignments in the Near Infrared. <i>Journal of Molecular Spectroscopy</i> , 1998 , 189, 291-3	3 0 103	45
213	Calculated rotational and vibrational excitation rates for electronHeH+ collisions. <i>Monthly Notices of the Royal Astronomical Society</i> , 1998 , 299, 171-175	4.3	26
212	JIM: A time-dependent, three-dimensional model of Jupiter's thermosphere and ionosphere. <i>Journal of Geophysical Research</i> , 1998 , 103, 20089-20112		92
211	Water on the Sun: The Sun yields more secrets to spectroscopy. <i>Contemporary Physics</i> , 1998 , 39, 283-29	943.3	11
210	On the calculation of electron-impact rotational excitation cross sections for molecular ions. Journal of Physics B: Atomic, Molecular and Optical Physics, 1998, 31, 2077-2090	1.3	16
209	Continuum states of. Journal of Physics B: Atomic, Molecular and Optical Physics, 1998, 31, L177-L185	1.3	7
208	Electron- scattering resonances as a function of bond length. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 1998 , 31, 815-844	1.3	40
207	Calculated high-temperature partition function and related thermodynamic data for H216O. <i>Journal of Chemical Physics</i> , 1998 , 109, 7197-7204	3.9	25
206	Calculation of the rotation libration states of water up to dissociation. <i>Journal of Chemical Physics</i> , 1998 , 109, 10885-10892	3.9	64

205	Ab initiopotential energy curves of Rydberg, valence and continuum states of NO. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 1998 , 31, 4485-4487	1.3	11
204	Parent state swapping of resonances in electron - hydrogen molecule scattering. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 1997 , 30, L301-L307	1.3	21
203	R-matrix calculations for polyatomic molecules: electron scattering by. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 1997 , 30, 4087-4096	1.3	134
202	Ab Initio Calculations of Vibrationally Resolved Resonances in Electron Collisions with H2, HD, and D2. <i>Physical Review Letters</i> , 1997 , 79, 4116-4119	7.4	35
201	The effective temperature and metallicity of CM Draconis. <i>Monthly Notices of the Royal Astronomical Society</i> , 1997 , 291, 780-796	4.3	25
200	A spectroscopic linelist for hot water. <i>Monthly Notices of the Royal Astronomical Society</i> , 1997 , 287, 79-8	3 6 4.3	26
199	An ISO Long Wavelength Spectrometer detection of CH in NGC 7027 and an HeH + upper limit. <i>Monthly Notices of the Royal Astronomical Society</i> , 1997 , 290, L71-L75	4.3	53
198	[ITAL]K[/ITAL]-Band Spectrum of Water in Sunspots. <i>Astrophysical Journal</i> , 1997 , 489, L205-L208	4.7	55
197	Water on the sun: line assignments based on variational calculations. <i>Science</i> , 1997 , 277, 346-8	33.3	117
196	Ab initiopotential energy curves of Rydberg, valence and continuum states of NO. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 1997 , 30, 1975-1988	1.3	34
195	Phase factors in electron-molecule collision calculations. <i>Computer Physics Communications</i> , 1997 , 100, 26-30	4.2	15
194	UKIRT Observations of the Impact and Consequences of Comet Shoemakerllevy 9 on Jupiter?. <i>Icarus</i> , 1997 , 126, 107-125	3.8	17
193	A Baseline Spectroscopic Study of the Infrared Auroras of Jupiter. <i>Icarus</i> , 1997 , 127, 379-393	3.8	88
192	Mid-to-Low Latitude H+3Emission from Jupiter. <i>Icarus</i> , 1997 , 130, 57-67	3.8	70
191	New Assignments for the Infrared Spectrum of H3+. <i>Journal of Molecular Spectroscopy</i> , 1997 , 181, 142-7	1503	39
190	Hot Bands of Water in the aManifold up to 50-40. <i>Journal of Molecular Spectroscopy</i> , 1997 , 184, 35-50	1.3	42
189	On the Spectroscopically Determined Potential Energy Surfaces for the Electronic Ground States of NO2 and H2O. <i>Journal of Molecular Spectroscopy</i> , 1997 , 185, 234-43	1.3	41
188	The Spectrum of Hot Water: Rotational Transitions and Difference Bands in the (020), (100), and (001) Vibrational States. <i>Journal of Molecular Spectroscopy</i> , 1997 , 186, 213-21	1.3	39

187	High-Temperature Rotational Transitions of Water in Sunspot and Laboratory Spectra. <i>Journal of Molecular Spectroscopy</i> , 1997 , 186, 422-47	1.3	102
186	A global potential energy surface for the H3+ molecule. <i>Chemical Physics Letters</i> , 1997 , 273, 107-114	2.5	44
185	Variation in the H[FORMULA][F][SUP]+[/SUP][INF]3[/INF][/F][/FORMULA] Emission of Uranus. <i>Astrophysical Journal</i> , 1997 , 474, L73-L76	4.7	26
184	Low-energy electron impact excitation of the nitrogen molecule: optically forbidden transitions. Journal of Physics B: Atomic, Molecular and Optical Physics, 1996 , 29, 1531-1547	1.3	49
183	A new algorithm for Hamiltonian matrix construction in electron - molecule collision calculations. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 1996 , 29, 1817-1828	1.3	77
182	R-matrix calculation of Rydberg states of CO. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 1996 , 29, 6185-6201	1.3	97
181	R-matrix calculation of the bound and continuum states of the - system. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 1996 , 29, 3747-3761	1.3	34
180	The potential energy surface of H2 16O. <i>Journal of Chemical Physics</i> , 1996 , 105, 6490-6497	3.9	144
179	Time-delay matrix analysis of resonances in electron scattering: - and. <i>Journal of Physics B: Atomic, Molecular and Optical Physics,</i> 1996 , 29, 4267-4283	1.3	38
178	Vibration-rotation levels of water beyond the Born-Oppenheimer approximation. <i>Chemical Physics Letters</i> , 1996 , 260, 381-387	2.5	89
177	RESONANCE PARAMETERS AND QUANTUM DEFECTS FOR SUPEREXCITED H2. <i>Atomic Data and Nuclear Data Tables</i> , 1996 , 64, 253-277	2	84
176	The Potential Energy Surface of Hydrogen Sulfide. <i>Journal of Molecular Spectroscopy</i> , 1996 , 178, 184-1	88 1.3	30
175	Quantum transport, recurrence and localization in H+ 3. <i>Molecular Physics</i> , 1996 , 87, 651-667	1.7	3
174	Calculated spectrum for near-dissociation H3+: a first attempt. <i>Molecular Physics</i> , 1996 , 89, 953-963	1.7	16
173	Quantum transport, recurrence and localization in H3+. <i>Molecular Physics</i> , 1996 , 87, 651-667	1.7	2
172	Spectroscopic Properties of the H 3 + Molecule: A New Calculated Line List. <i>Astrophysical Journal</i> , 1996 , 464, 516	4.7	174
171	On the determination of potential energy surfaces of spectroscopic accuracy. <i>Computational and Theoretical Chemistry</i> , 1995 , 341, 133-140		9
170	Asymmetric adiabatic correction to the rotation levels of H2D+ and D2H+. <i>Journal of Chemical Physics</i> , 1995 , 102, 9322-9326	3.9	30

169	Spectroscopically determined Born Dppenheimer and adiabatic surfaces for H3+, H2D+, D2H+, and D3+. <i>Journal of Chemical Physics</i> , 1995 , 103, 10433-10438	3.9	36
168	Water vapour in cool dwarf stars. <i>Monthly Notices of the Royal Astronomical Society</i> , 1995 , 277, 767-776	4.3	25
167	Collision of comet Shoemaker-Levy 9 with Jupiter observed by the NASA infrared telescope facility. <i>Science</i> , 1995 , 267, 1277-82	33.3	56
166	The effect of the impact of comet Shoemaker Levy-9 on Jupiter's aurorae. <i>Geophysical Research Letters</i> , 1995 , 22, 1629-1632	4.9	11
165	. Reports on Progress in Physics, 1995 , 58, 421-476	14.4	105
164	A High-Temperature Partition Function for [FORMULA][F][RM]H[/RM][SUP]+[/SUP][INF]3[/INF][/F][/FORMULA]. <i>Astrophysical Journal</i> , 1995 , 454,	4.7	55
163	H3+: from chaos to the cosmos. <i>Physics World</i> , 1995 , 8, 33-36	0.5	5
162	Infrared Transition Intensities for Water: A Comparison of ab-Initio and Fitted Dipole Moment Surfaces. <i>Journal of Molecular Spectroscopy</i> , 1995 , 169, 458-467	1.3	41
161	Ab initio ro-vibrational levels of H3+ beyond the Born-Oppenheimer approximation. <i>Chemical Physics Letters</i> , 1995 , 232, 295-300	2.5	55
160	DVR3D: for the fully pointwise calculation of ro-vibrational spectra of triatomic molecules. <i>Computer Physics Communications</i> , 1995 , 86, 175-198	4.2	107
159	Computed infrared absorption properties of hot water vapour. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 1995 , 53, 373-380	2.1	21
158	The UK Molecular R-Matrix Scattering Package: a Computational Perspective 1995 , 239-254		16
157	Computation of Frequencies and Linestrengths for Triatomic Molecules of Astronomical Interest. <i>International Astronomical Union Colloquium</i> , 1994 , 146, 296-309		3
156	What astronomy has learned from observations of. <i>Canadian Journal of Physics</i> , 1994 , 72, 760-771	1.1	30
155	Dissociative recombination without curve crossing: study of HeH+. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 1994 , 27, 5943-5953	1.3	69
154	Non-Born-Oppenheimer correction to the H3+ potential from experimental data. <i>Physical Review A</i> , 1994 , 50, 314-316	2.6	26
153	A spectroscopically determined potential energy surface for the ground state of H216O: A new level of accuracy. <i>Journal of Chemical Physics</i> , 1994 , 101, 7651-7657	3.9	110
152	A Spectroscopically Determined Potential Energy Surface for H+3. <i>Journal of Molecular Spectroscopy</i> , 1994 , 163, 71-79	1.3	39

151	An Empirical Potential Energy Surface for Water Accounting for States with High Angular Momentum. <i>Journal of Molecular Spectroscopy</i> , 1994 , 168, 313-322	1.3	22
150	Latitudinal Temperature Variations of Jovian H+3. <i>Icarus</i> , 1994 , 107, 189-194	3.8	31
149	Coarse grained spectra, dynamics and quantum phase space structures of H+ 3. <i>Molecular Physics</i> , 1994 , 83, 361-379	1.7	14
148	The calculation of molecular spectra using finite-element methods. <i>The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties</i> , 1994 , 69, 1027-1036		4
147	H3 +: from first principles to Jupiter. <i>Contemporary Physics</i> , 1994 , 35, 105-116	3.3	8
146	The influence of H2O line blanketing on the spectra of cool dwarf stars. <i>Astrophysical Journal</i> , 1994 , 426, L39	4.7	59
145	R-Matrix Calculations of Inelastic Electron Scattering by Diatomic Molecules 1994 , 15-29		
144	Computation of frequencies and linestrengths for triatomic molecules of astronomical interest 1994 , 296-309		7
143	All the bound vibrational states of H3+: A reappraisal. <i>Journal of Chemical Physics</i> , 1993 , 98, 7191-7203	3.9	79
142	First-principles calculations on the astrochemistry and spectroscopy of H+3. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1993 , 89, 2155		8
141	On the MeyerBotschwinaBurton potential energy surface for H3+. <i>Journal of Chemical Physics</i> , 1993 , 98, 10104-10105	3.9	11
140	Nonlinear normal modes and local bending vibrations of H+3 and D+3. <i>Journal of Chemical Physics</i> , 1993 , 99, 906-918	3.9	30
139	Rotational excitation with pointwise vibrational wave functions. <i>Journal of Chemical Physics</i> , 1993 , 98, 9658-9668	3.9	16
138	Calculated vibrational excitation rates for electron - Formula collisions. <i>Monthly Notices of the Royal Astronomical Society</i> , 1993 , 263, 909-912	4.3	24
137	Rotational Levels of H2D+: Variational Calculations and Assignments. <i>Journal of Molecular Spectroscopy</i> , 1993 , 157, 237-247	1.3	8
136	Gateway states and bath states in the vibrational spectrum of H+3. <i>Chemical Physics Letters</i> , 1993 , 206, 429-436	2.5	22
135	Triatom: programs for the calculation of ro-vibrational spectra of triatomic molecules. <i>Computer Physics Communications</i> , 1993 , 75, 339-364	4.2	91
134	DVR1D: programs for mixed pointwise/basis set calculation of ro-vibrational spectra. <i>Computer Physics Communications</i> , 1993 , 75, 365-378	4.2	15

133	DVR3D: programs for fully pointwise calculation of vibrational spectra. <i>Computer Physics Communications</i> , 1993 , 75, 379-395	4.2	25
132	Coordinate ordering in the discrete variable representation. <i>Computer Physics Communications</i> , 1993 , 74, 193-198	4.2	10
131	Electron impact excitation cross sections for CO. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 1993 , 26, 2429-2441	1.3	57
130	Detection of H3(+) from Uranus. <i>Astrophysical Journal</i> , 1993 , 405, 761	4.7	101
129	Electron Collision Induced Excitations and Dissociation of HeH+ Using the R-Matrix Method. <i>NATO ASI Series Series B: Physics</i> , 1993 , 163-172		
128	Electronic transitions in the HeH molecule: a MQDT approach. <i>Journal of Physics B: Atomic, Molecular and Optical Physics,</i> 1992 , 25, L49-L55	1.3	16
127	On the use of variational wavefunctions in calculating vibrational band intensities. <i>Molecular Physics</i> , 1992 , 76, 1147-1156	1.7	86
126	Accurate specific molecular state densities by phase space integration. II. Comparison with quantum calculations on H+3 and HD+2. <i>Journal of Chemical Physics</i> , 1992 , 96, 6842-6849	3.9	36
125	Reply to Comment on: Discrepancies between variationally calculated vibrational energies of H3+. <i>Journal of Chemical Physics</i> , 1992 , 96, 2426-2427	3.9	16
124	Highly excited vibrational states of the KCN molecule. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1992 , 88, 3287		8
123	H3+ in space. Chemical Society Reviews, 1992, 21, 281	58.5	37
122	Calculating molecular spectra. <i>Chemical Society Reviews</i> , 1992 , 21, 91	58.5	6
121	Faraday research article. Why calculate the spectra of small molecules?. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1992 , 88, 3271		20
120	Dicretization to avoid singularities in vibrationEotation Hamiltonians: A bisector embedding for AB2 triatomics. <i>International Journal of Quantum Chemistry</i> , 1992 , 42, 941-952	2.1	41
119	Identification of features due to H3+ in the infrared spectrum of supernova 1987A. <i>Nature</i> , 1992 , 355, 420-422	50.4	77
118	On the convergence of effective Hamiltonian expansions. <i>Journal of Molecular Spectroscopy</i> , 1992 , 154, 246-251	1.3	7
117	Bands of H3+ up to 4½: Rovibrational transitions from first principles calculations. <i>Journal of Molecular Spectroscopy</i> , 1992 , 153, 718-725	1.3	47
116	Transition moments for excitation to Rydberg states of molecules using the R-matrix method: H2with n. <i>Journal of Physics B: Atomic, Molecular and Optical Physics,</i> 1992 , 25, 2017-2026	1.3	18

115	Band origins for water up to 22 000 cmll: A comparison of spectroscopically determined potential energy surfaces. <i>Journal of Molecular Spectroscopy</i> , 1991 , 150, 597-609	1.3	43
114	Observation of the 3½ <- 0 overtone band of H3+. <i>Journal of Molecular Spectroscopy</i> , 1991 , 145, 222-224	1.3	32
113	Imaging Jupiter's aurorae from H3+ emissions in the 3-4 micrometers band. <i>Nature</i> , 1991 , 353, 539-42	50.4	67
112	A general treatment of vibration-rotation coordinates for triatomic molecules. <i>International Journal of Quantum Chemistry</i> , 1991 , 39, 183-196	2.1	197
111	Differential cross sections for electronic excitation of molecular hydrogen using the R-matrix method. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 1991 , 24, 3479-3490	1.3	31
110	R-matrix calculations of vibrationally resolved positron-N2scattering cross sections. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 1991 , 24, 3517-3529	1.3	22
109	Vibrationally resolved electron HeH+collisions using the non-adiabatic R-matrix method. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 1991 , 24, 1851-1866	1.3	24
108	Bound states using the R-matrix method: Rydberg states of HeH. <i>Journal of Physics B: Atomic, Molecular and Optical Physics,</i> 1991 , 24, 3685-3699	1.3	72
107	Infrared Emissions of H 3 + in the Atmosphere of Jupiter in the 2.1 and 4.0 Micron Region: Erratum. <i>Astrophysical Journal</i> , 1991 , 367, L37	4.7	2
106	A table of astronomically important ro-vibrational transitions for the H3(+) molecular ion. <i>Astrophysical Journal, Supplement Series</i> , 1991 , 77, 317	8	62
105	The Calculation of RO-Vibrational Molecular Spectra From First Principles 1991 , 423-424		
104	Differential cross sections for elastic positron-H2 collisions using the R-matrix method. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 1990 , 23, 2471S-2471S	1.3	12
103	All the vibrational bound states of H+3. Chemical Physics Letters, 1990, 173, 133-138	2.5	102
102	Calculated rotational and rovibrational spectra of D2S and HDS. <i>Journal of Molecular Spectroscopy</i> , 1990 , 143, 61-80	1.3	23
101	Forbidden rotational and rovibrational transitions in H3+: First principles calculations. <i>Journal of Molecular Spectroscopy</i> , 1990 , 141, 104-117	1.3	28
100	Differential cross sections for elastic positron-H2collisions using the R-matrix method. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 1990 , 23, 1005-1016	1.3	46
99	Electronic excitation of molecular hydrogen using the R-matrix method. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 1990 , 23, 4625-4639	1.3	61
98	Spectroscopy and dynamics of the highly excited nonrotating three-dimensional H+3 molecular ion. Journal of Chemical Physics, 1990 , 92, 3377-3386	3.9	18

97	Resonances in the electronic excitation of molecular hydrogen. <i>Physical Review Letters</i> , 1990 , 64, 2889-7	2 8 942	40	
96	Calculated spectra for the N2-Ar van der Waals complex. <i>Molecular Physics</i> , 1990 , 71, 1043-1054	1.7	31	
95	Quantum mechanics of highly excited states of the H+3 molecular ion: A numerical study of the two degree of freedom C2v subspace. <i>Journal of Chemical Physics</i> , 1990 , 92, 3005-3017	3.9	32	
94	Discrete variable representations of large-amplitude ro-vibrational states in a generalised coordinate system. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1990 , 86, 1963		17	
93	Very highly excited vibrational states of LiCN using a discrete variable representation. <i>Molecular Physics</i> , 1990 , 69, 639-648	1.7	20	
92	Infrared emissions of H3(+) in the atmosphere of Jupiter in the 2.1 and 4.0 micron region. <i>Astrophysical Journal</i> , 1990 , 360, L55	4.7	78	
91	Highly excited rovibrational states of small molecules. <i>Philosophical Transactions of the Royal Society: Physical and Engineering Sciences</i> , 1990 , 332, 329-341		6	
90	The Solution of the Bound State Nuclear Motion Problem for Polyatomic Clusters. <i>NATO ASI Series Series B: Physics</i> , 1990 , 323-328		1	
89	First principles calculation of rotational and ro-vibrational line strengths. <i>Molecular Physics</i> , 1989 , 66, 429-456	1.7	39	
88	Fractionation effects in muoniumfinolecular hydrogen reactions. <i>Journal of Chemical Physics</i> , 1989 , 90, 2524-2524	3.9	5	
87	Benchmark calculations of first principles rotational and ro-vibrational line strenghts. <i>Computer Physics Communications</i> , 1989 , 55, 71-75	4.2	25	
86	A program suite for the calculation of ro-vibrational spectra of triatomic molecules. <i>Computer Physics Communications</i> , 1989 , 55, 149-175	4.2	41	
85	Hot band transition frequencies and line strengths in H3+: First principles calculations. <i>Journal of Molecular Spectroscopy</i> , 1989 , 136, 223-240	1.3	27	
84	Detection of H3+ on Jupiter. <i>Nature</i> , 1989 , 340, 539-541	50.4	282	
83	Highly excited rovibrational states using a discrete variable representation: The H+3 molecular ion. <i>Journal of Chemical Physics</i> , 1989 , 91, 3815-3825	3.9	112	
82	The Calculation of Ro-Vibrational Spectra Using Supercomputers 1989 , 261-270		3	
81	Laboratory observation of the 2nu2 band of the H3(+) molecular ion. <i>Astrophysical Journal</i> , 1989 , 347, L51	4.7	39	
80	An effective computational approach to the calculation of the vibration-rotation spectra of triatomic molecules. <i>Computer Physics Communications</i> , 1988 , 51, 73-82	4.2	27	

79	Calculation of the high angular momentum dissociation limit for H3+ and H2D+. <i>Chemical Physics Letters</i> , 1988 , 145, 117-120	2.5	40
78	Overtone bands of H3+: First principle calculations. <i>Journal of Molecular Spectroscopy</i> , 1988 , 128, 530-5	39 .3	69
77	Calculated ro-vibrational spectrum of 7Li+3 and 7Li2 6Li+. <i>Spectrochimica Acta Part A: Molecular Spectroscopy</i> , 1988 , 44, 1287-1290		7
76	Understanding the Structure and Spectra of Non-Rigid Molecules. <i>Topics in Molecular Organization and Engineering</i> , 1988 , 313-333		1
75	Beyond ro-vibrational separation. <i>Journal of the Chemical Society, Faraday Transactions 2</i> , 1988 , 84, 129	5	41
74	Positron-HF collisions: Prediction of a weakly bound state. <i>Physical Review Letters</i> , 1988 , 61, 2737-2739	7.4	18
73	Ab initio investigation of the bound rovibrational states in the electronic ground state of HeN+2. Journal of Chemical Physics, 1988 , 89, 2178-2184	3.9	67
72	Regular/irregular phase space structure of HCN/HNC. <i>Journal of Chemical Physics</i> , 1988 , 88, 1598-1607	3.9	35
71	Continuum and bound states of the eCH+system using the R-matrix method. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 1988 , 21, 805-816	1.3	32
70	A Ro-Vibrational Study of Regular/Irregular Behaviour of the CO-Ar System 1988 , 195-206		1
69	Calculated rotational and rovibrational transitions in the spectrum of H3(+). <i>Astrophysical Journal</i> , 1988 , 335, 486	4.7	42
68	Calculated Vibrationally and Rotationally Resolved Photoelectron Spectra of H2 1988 , 247-251		11
67	Fully vibrationally resolved photoionisation of H2and D2. <i>Journal of Physics B: Atomic and Molecular Physics</i> , 1987 , 20, L375-L378		30
66	Rotational and polarisation effects in low-energy positron-CO collisions using the R-matrix method. <i>Journal of Physics B: Atomic and Molecular Physics</i> , 1987 , 20, L641-L646		20
65	Predicted vibrationEotation levels of H2He+ and its isotopomers. <i>Journal of Chemical Physics</i> , 1987 , 87, 6648-6652	3.9	29
64	Variational methods for the calculation of rovibrational energy levels of small molecules. <i>Journal of the Chemical Society, Faraday Transactions 2</i> , 1987 , 83, 1663		25
63	PEAD Ifor the calculation of photoelectron angular distributions of linear molecules. <i>Computer Physics Communications</i> , 1987 , 46, 99-105	4.2	3
62	The use of supercomputers for the variational calculation of ro-vibrationally excited states of floppy molecules. <i>Theoretica Chimica Acta</i> , 1987 , 72, 265-276		11

61	The generation of continuum orbitals for molecular r-matrix calculations using lagrange orthogonalisation. <i>Computer Physics Communications</i> , 1987 , 47, 207-212	4.2	46	
60	First principles calculation of the molecular constants of H3+, H2D+, D2H+, and D3+. <i>Journal of Molecular Spectroscopy</i> , 1987 , 126, 183-192	1.3	62	
59	Understanding Floppy Molecules 1987 , 449-463		5	
58	Chaos in Molecular Systems? 1987 , 15-30		6	
57	The AB Initio Inclusion of Polarisation Effects in Low-Energy Positron-Molecule Collisions Using the R-Matrix Method. <i>NATO ASI Series Series B: Physics</i> , 1987 , 111-121			
56	Highly rotationally excited states of floppy molecules: H2D+ with J? 20. <i>Molecular Physics</i> , 1986 , 58, 1	067 <i>:7</i> 108	8594	
55	Triatom, select and rotlev [For the calculation of the ro-vibrational levels of triatomic molecules. <i>Computer Physics Communications</i> , 1986 , 42, 257-270	4.2	31	
54	The calculation of the vibration-rotation energies of triatomic molecules using scattering coordinates. <i>Computer Physics Reports</i> , 1986 , 4, 1-36		221	
53	Continuum states of the hydrogen molecule with the R-Matrix method. <i>International Journal of Quantum Chemistry</i> , 1986 , 29, 1033-1042	2.1	45	
52	The construction and fitting of molecular potential energy surfaces and their use in vibration-rotation calculations. <i>International Journal of Quantum Chemistry</i> , 1986 , 30, 507-520	2.1		
51	Transition intensities and fluorescence lifetimes for regular and chaotic states of LiCN. <i>Chemical Physics</i> , 1986 , 104, 399-407	2.3	14	
50	Low-energy electron scattering by the NO molecule. <i>Journal of Physics B: Atomic and Molecular Physics</i> , 1986 , 19, 4025-4033		50	
49	Low-energy, elastic positron-molecule collisions using the R-matrix method: e+-He2and e+-N2. Journal of Physics B: Atomic and Molecular Physics, 1986 , 19, 4255-4263		46	
48	On the vibrational Born ppenheimer separation scheme for molecules with regular and chaotic states. <i>Journal of Chemical Physics</i> , 1986 , 84, 6210-6217	3.9	23	
47	Adiabatic-invariant change due to separatrix crossing. <i>Physical Review A</i> , 1986 , 34, 4256-4275	2.6	232	
46	A generalized approach to the calculation of ro-vibrational spectra of triatomic molecules. <i>Molecular Physics</i> , 1986 , 58, 1053-1066	1.7	134	
45	The infrared spectrum of H+3 and its isotopomers. A challenge to theory and experiment. <i>Journal of the Chemical Society, Faraday Transactions 2</i> , 1986 , 82, 1151		17	
44	Calculated ro-vibrational spectrum of H2D+. <i>Molecular Physics</i> , 1985 , 54, 141-144	1.7	18	

43	Routes to vibrational chaos in triatomic molecules. Chemical Physics, 1985, 93, 237-244	2.3	31
42	On the calculation of matrix elements between polynomial basis functions. <i>Computer Physics Communications</i> , 1985 , 38, 39-41	4.2	12
41	Electronic excitation of the b3´u+state of H2using the R-matrix method. <i>Journal of Physics B: Atomic and Molecular Physics</i> , 1985 , 18, L851-L855		70
40	Low-energy electron-H2+collisions: variation of resonance parameters with internuclear separation. <i>Journal of Physics B: Atomic and Molecular Physics</i> , 1985 , 18, 155-165		84
39	Rovibrational spectrum of the excited potential energy surface of He+H2 (B 1Ū+). <i>Journal of Chemical Physics</i> , 1985 , 82, 2163-2164	3.9	8
38	Quantum and classical vibrational chaos in floppy molecules. <i>Journal of Chemical Physics</i> , 1985 , 82, 800-	-899	54
37	A calculation of the rovibrational spectra of the H3/+, H2D+ and D2H+ molecules. <i>Molecular Physics</i> , 1985 , 56, 1175-1183	1.7	30
36	Quantum vibrational chaos in the ArHCl van der Waals molecule. <i>Molecular Physics</i> , 1985 , 55, 463-473	1.7	25
35	Ab initio dipole surfaces, vibrationally averaged dipole moments, and infrared transition intensities for KCN and LiCN. <i>Journal of Chemical Physics</i> , 1984 , 80, 3223-3233	3.9	34
34	Effects of the potential anisotropy on the calculated fine-structure spectrum of O2He. <i>Chemical Physics Letters</i> , 1984 , 105, 49-53	2.5	11
33	Vibrational chaos in KCN: A comparison of quantum and classical calculations. <i>Chemical Physics Letters</i> , 1984 , 109, 160-165	2.5	27
32	Atomdiat2 and genpot: Adaptations of atomdiat for the ro-vibrational levels of any floppy triatomic using a general potential function. <i>Computer Physics Communications</i> , 1984 , 32, 109-114	4.2	12
31	RESONA program for the detection and fitting of Breit-Wigner resonances. <i>Computer Physics Communications</i> , 1984 , 33, 421-424	4.2	183
30	On the rovibrational levels of the H3 + and H2D+ molecules. <i>Molecular Physics</i> , 1984 , 51, 887-906	1.7	97
29	Low-energy e-H2+collisions using the R-matrix method. <i>Journal of Physics B: Atomic and Molecular Physics</i> , 1984 , 17, 905-912		48
28	Hindered internal rotations in Van der Waals molecules and molecular crystals. <i>International Journal of Quantum Chemistry</i> , 1983 , 23, 1091-1100	2.1	5
27	Calculated ro-vibrational fine-structure spectrum and weak-field zeeman splittings of the O2Ar van der Waals molecule. <i>Chemical Physics</i> , 1983 , 76, 195-202	2.3	23
26	Variationally exact ro-vibrational levels of the floppy CH2+ molecule. <i>Journal of Molecular Spectroscopy</i> , 1983 , 101, 71-82	1.3	87

25	Quantum dynamics of non-rigid systems comprising two polyatomic fragments. <i>Molecular Physics</i> , 1983 , 50, 1025-1043	1.7	178
24	Variationally exact rovibrational spectra of nonrigid triatomics: The HeHF van der Waals molecule. <i>Journal of Chemical Physics</i> , 1983 , 79, 43-51	3.9	73
23	ATOMDIAT IA program for calculating variationally exact ro-vibrational levels of floppy triatomics. <i>Computer Physics Communications</i> , 1983 , 29, 307-319	4.2	28
22	Ab initio rovibrational spectrum of LiNC and LiCN. <i>Journal of Molecular Spectroscopy</i> , 1983 , 99, 263-278	1.3	45
21	The ab initio calculation of the vibrational-rotational spectrum of triatomic systems in the close-coupling approach, with KCN and H2Ne as examples. <i>Journal of Chemical Physics</i> , 1982 , 77, 4061-4	1972	355
20	Quantum dynamics of the van der Waals molecule (N2)2: An ab initio treatment. <i>Journal of Chemical Physics</i> , 1982 , 77, 5664-5681	3.9	93
19	Ab initio vibrational-rotational spectrum of potassium cyanide: KCN. II. Large amplitude motions and rovibrational coupling. <i>Journal of Chemical Physics</i> , 1982 , 76, 5710-5718	3.9	34
18	Ab initio vibrational-rotational spectrum of potassium cyanide: KCN. <i>Molecular Physics</i> , 1982 , 46, 97-109	1.7	23
17	An SCF potential energy surface for lithium cyanide. <i>Chemical Physics Letters</i> , 1982 , 89, 223-227	2.5	111
16	The ground-state H3 molecule. <i>Chemical Physics Letters</i> , 1982 , 86, 181-184	2.5	12
15	On the isotropic and leading anisotropic terms of the H-H2 potential energy surface. <i>Chemical Physics Letters</i> , 1981 , 77, 151-157	2.5	16
14	Ab initio SCF calculations on the potential energy surface of potassium cyanide (KCN). <i>Journal of Chemical Physics</i> , 1981 , 75, 1245-1252	3.9	58
13	Many-body contributions to the intermolecular potential in alkali halide crystals and clusters. <i>Molecular Physics</i> , 1981 , 42, 747-755	1.7	24
12	A study of the variational convergence of the F centre energy levels of LiF. <i>Molecular Physics</i> , 1981 , 42, 297-305	1.7	18
11	Molecular SCF calculations on the F centre of LiF. Chemical Physics Letters, 1980, 69, 212-215	2.5	19
10	Ab-initio SCF molecular-orbital calculations on dinitrogen transition-metal complexes. <i>Journal of the Chemical Society Dalton Transactions</i> , 1980 , 1425		17
9	A non-empirical appraisal of the angular-overlap model for transition-metal complexes. <i>Journal of the Chemical Society Dalton Transactions</i> , 1980 , 2395		2
8	Potential energy curves of the lower states of CN+. <i>Molecular Physics</i> , 1979 , 38, 1755-1760	1.7	15

7	Chercher le croisement. <i>Chemical Physics Letters</i> , 1979 , 61, 431-434	2.5	66	
6	Xenon in CO2 well gas revisited. <i>Journal of Geophysical Research</i> , 1978 , 83, 2313		78	
5	ExoMol line lists IXLIV. IR and UV line list for silicon monoxide (28Si16O). <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	3	
4	A upper limit for water dimer absorption in the 750 nm spectral region and a revised water line list		6	
3	Quantum monodromy in the spectrum of H2O and other systems: new insight into the level structure of quasi-linear molecules		14	
2	Electron Collisions with Molecular Nitrogen in Its Ground and Electronically Excited States Using the R-matrix Method. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> ,	1.3	1	
1	A high resolution line list for AlO. Monthly Notices of the Royal Astronomical Society,	4.3	2	