
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4786360/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Chicago Classification of esophageal motility disorders, v3.0. Neurogastroenterology and Motility, 2015, 27, 160-174.	3.0	1,628
2	Modern diagnosis of GERD: the Lyon Consensus. Gut, 2018, 67, 1351-1362.	12.1	991
3	Chicago classification criteria of esophageal motility disorders defined in high resolution esophageal pressure topography ¹ . Neurogastroenterology and Motility, 2012, 24, 57-65.	3.0	716
4	Highâ€resolution manometry in clinical practice: utilizing pressure topography to classify oesophageal motility abnormalities. Neurogastroenterology and Motility, 2009, 21, 796-806.	3.0	294
5	Ambulatory reflux monitoring for diagnosis of gastroâ€esophageal reflux disease: Update of the Porto consensus and recommendations from an international consensus group. Neurogastroenterology and Motility, 2017, 29, 1-15.	3.0	275
6	The 2018 ISDE achalasia guidelines. Ecological Management and Restoration, 2018, 31, .	0.4	221
7	Distensibility of the esophagogastric junction assessed with the functional lumen imaging probe (<scp>FLIP</scp> â,,¢) in achalasia patients. Neurogastroenterology and Motility, 2013, 25, 496.	3.0	190
8	Classification of esophageal motor findings in gastroâ€esophageal reflux disease: Conclusions from an international consensus group. Neurogastroenterology and Motility, 2017, 29, e13104.	3.0	158
9	Histopathologic patterns among achalasia subtypes. Neurogastroenterology and Motility, 2016, 28, 139-145.	3.0	99
10	How to select patients for antireflux surgery? The ICARUS guidelines (international consensus) Tj ETQq0 0 0 rgB1	Verlock 12.1	2 10 Tf 50 38 80
11	Validation of criteria for the definition of transient lower esophageal sphincter relaxations using highâ€resolution manometry. Neurogastroenterology and Motility, 2017, 29, e12920.	3.0	78
12	The contractile deceleration point: an important physiologic landmark on oesophageal pressure topography. Neurogastroenterology and Motility, 2010, 22, 395-e90.	3.0	77
13	Evaluating the reliability and construct validity of the Eckardt symptom score as a measure of achalasia severity. Neurogastroenterology and Motility, 2018, 30, e13287.	3.0	74
14	Development and validation of the brief esophageal dysphagia questionnaire. Neurogastroenterology and Motility, 2016, 28, 1854-1860.	3.0	70
15	2019 Seoul Consensus on Esophageal Achalasia Guidelines. Journal of Neurogastroenterology and Motility, 2020, 26, 180-203.	2.4	70
16	Majority of symptoms in esophageal reflux <scp>PPI</scp> nonâ€responders are not related to reflux. Neurogastroenterology and Motility, 2015, 27, 1667-1674.	3.0	69
17	Recurrence of Barrett's Esophagus is Rare Following Endoscopic Eradication Therapy Coupled With Effective Reflux Control. American Journal of Gastroenterology, 2017, 112, 556-566.	0.4	69
18	Utilizing functional lumen imaging probe topography to evaluate esophageal contractility during volumetric distention: a pilot study. Neurogastroenterology and Motility, 2015, 27, 981-989.	3.0	68

#	Article	IF	CITATIONS
19	Severity of endoscopically identified esophageal rings correlates with reduced esophageal distensibility in eosinophilic esophagitis. Endoscopy, 2016, 48, 794-801.	1.8	68
20	Development and Validation of a Mucosal Impedance Contour Analysis System to Distinguish Esophageal Disorders. Gastroenterology, 2019, 156, 1617-1626.e1.	1.3	68
21	Role of a health psychologist in the management of functional esophageal complaints. Ecological Management and Restoration, 2015, 28, 428-436.	0.4	65
22	The association between systemic sclerosis disease manifestations and esophageal highâ€resolution manometry parameters. Neurogastroenterology and Motility, 2016, 28, 1157-1165.	3.0	65
23	Vigor of peristalsis during multiple rapid swallows is inversely correlated with acid exposure time in patients with <scp>NERD</scp> . Neurogastroenterology and Motility, 2016, 28, 243-250.	3.0	63
24	Smoking and gastro-oesophageal reflux disease. European Journal of Gastroenterology and Hepatology, 2000, 12, 837-842.	1.6	61
25	Acid reflux event detection using the Bravo wireless versus the Slimline catheter pH systems: why are the numbers so different?. Gut, 2005, 54, 1687-1692.	12.1	60
26	Feasibility and acceptability of esophageal-directed hypnotherapy for functional heartburn. Ecological Management and Restoration, 2016, 29, 490-496.	0.4	59
27	Validation of the oesophageal hypervigilance and anxiety scale for chronic oesophageal disease. Alimentary Pharmacology and Therapeutics, 2018, 47, 1270-1277.	3.7	58
28	Upper sphincter function during transient lower oesophageal sphincter relaxation (tLOSR); it is mainly about microburps. Neurogastroenterology and Motility, 2007, 19, 203-210.	3.0	54
29	Diagnosis and Treatment of Rumination Syndrome. Clinical Gastroenterology and Hepatology, 2018, 16, 1549-1555.	4.4	54
30	Evaluation of esophageal distensibility in eosinophilic esophagitis: an update and comparison of functional lumen imaging probe analytic methods. Neurogastroenterology and Motility, 2016, 28, 1844-1853.	3.0	52
31	Motility-modifying agents and management of disorders of gastrointestinal motility. Gastroenterology, 2000, 118, S32-S47.	1.3	51
32	Highâ€resolution impedance manometry measurement of bolus flow time in achalasia and its correlation with dysphagia. Neurogastroenterology and Motility, 2015, 27, 1232-1238.	3.0	46
33	Patients with refractory reflux symptoms: What do they have and how should they be managed?. Neurogastroenterology and Motility, 2015, 27, 1195-1201.	3.0	46
34	Chicago classification version 4.0 [©] technical review: Update on standard highâ€resolution manometry protocol for the assessment of esophageal motility. Neurogastroenterology and Motility, 2021, 33, e14120.	3.0	41
35	Highâ€resolution impedance manometry parameters enhance the esophageal motility evaluation in nonâ€obstructive dysphagia patients without a major Chicago Classification motility disorder. Neurogastroenterology and Motility, 2017, 29, e12941.	3.0	40
36	Inter-observer agreement for diagnostic classification of esophageal motility disorders defined in high-resolution manometry. Ecological Management and Restoration, 2015, 28, 711-719.	0.4	39

#	Article	IF	CITATIONS
37	The relationship between esophageal acid exposure and the esophageal response to volumetric distention. Neurogastroenterology and Motility, 2018, 30, e13240.	3.0	36
38	Optimizing the swallow protocol of clinical highâ€resolution esophageal manometry studies. Neurogastroenterology and Motility, 2012, 24, e489-96.	3.0	32
39	Chicago Classification update (V4.0): Technical review on diagnostic criteria for ineffective esophageal motility and absent contractility. Neurogastroenterology and Motility, 2021, 33, e14134.	3.0	30
40	Recent advances in dysphagia management. F1000Research, 2019, 8, 1527.	1.6	30
41	Measuring ECJ opening patterns using high resolution intraluminal impedance. Neurogastroenterology and Motility, 2005, 17, 200-206.	3.0	29
42	Prolonged Wireless pH Monitoring in Patients With Persistent Reflux Symptoms Despite Proton Pump Inhibitor Therapy. Clinical Gastroenterology and Hepatology, 2020, 18, 2912-2919.	4.4	29
43	Development of the Northwestern Esophageal Quality of Life Scale: A Hybrid Measure for Use Across Esophageal Conditions. American Journal of Gastroenterology, 2016, 111, 493-499.	0.4	24
44	High-Resolution Manometry Thresholds and Motor Patterns Among Asymptomatic Individuals. Clinical Gastroenterology and Hepatology, 2022, 20, e398-e406.	4.4	23
45	Esophageal diverticula are associated with propagating peristalsis: a study utilizing highâ€resolution manometry. Neurogastroenterology and Motility, 2016, 28, 392-398.	3.0	22
46	Jackhammer esophagus: Assessing the balance between prepeak and postpeak contractile integral. Neurogastroenterology and Motility, 2018, 30, e13262.	3.0	21
47	Abnormal esophageal acid exposure on highâ€dose proton pump inhibitor therapy is common in systemic sclerosis patients. Neurogastroenterology and Motility, 2018, 30, e13247.	3.0	20
48	A review of medical therapy for proton pump inhibitor nonresponsive gastroesophageal reflux disease. Ecological Management and Restoration, 2017, 30, 1-15.	0.4	19
49	Interâ€rater agreement of novel highâ€resolution impedance manometry metrics: Bolus flow time and esophageal impedance integral ratio. Neurogastroenterology and Motility, 2018, 30, e13289.	3.0	19
50	Trajectory assessment is useful when day-to-day esophageal acid exposure varies in prolonged wireless pH monitoring. Ecological Management and Restoration, 2019, 32, .	0.4	19
51	Competency based medical education in gastrointestinal motility. Neurogastroenterology and Motility, 2016, 28, 1460-1464.	3.0	17
52	Chicago Classification update (version 4.0): Technical review on diagnostic criteria for achalasia. Neurogastroenterology and Motility, 2021, 33, e14182.	3.0	16
53	Slimline vs. glass pH electrodes: what degree of accuracy should we expect?. Alimentary Pharmacology and Therapeutics, 2006, 23, 331-340.	3.7	15
54	Evaluation of esophageal contractile propagation using esophageal pressure topography. Neurogastroenterology and Motility, 2012, 24, 20-26.	3.0	14

#	Article	IF	CITATIONS
55	Hypocholesterolemia in hairy cell leukemia: A marker for proliferative activity. , 1997, 55, 129-133.		13
56	Benchmarks for the interpretation of esophageal highâ€resolution manometry. Neurogastroenterology and Motility, 2017, 29, e12971.	3.0	12
57	Review of antireflux procedures for proton pump inhibitor nonresponsive gastroesophageal reflux disease. Ecological Management and Restoration, 2017, 30, 1-14.	0.4	11
58	Esophagogastric junction morphology and contractile integral on highâ€resolution manometry in asymptomatic healthy volunteers: An international multicenter study. Neurogastroenterology and Motility, 2021, 33, e14009.	3.0	10
59	Calculation of esophagogastric junction vector volume using three-dimensional high-resolution manometry. Ecological Management and Restoration, 2015, 28, 684-690.	0.4	9
60	Validation of the Short-Form Esophageal Hypervigilance and Anxiety Scale. Clinical Gastroenterology and Hepatology, 2021, , .	4.4	9
61	ESNM/ANMS Review. Diagnosis and management of globus sensation: A clinical challenge. Neurogastroenterology and Motility, 2020, 32, e13850.	3.0	8
62	Correlation between novel 3D highâ€resolution manometry esophagogastric junction metrics and <scp>pH</scp> â€metry in reflux disease patients. Neurogastroenterology and Motility, 2018, 30, e13344.	3.0	7
63	A budget impact analysis of a magnetic sphincter augmentation device for the treatment of medication-refractory mechanical gastroesophageal reflux disease: a United States payer perspective. Surgical Endoscopy and Other Interventional Techniques, 2020, 34, 1561-1572.	2.4	7
64	Could the peristaltic transition zone be caused by nonâ€uniform esophageal muscle fiber architecture? A simulation study. Neurogastroenterology and Motility, 2017, 29, e13022.	3.0	6
65	Assessing the pre―and postpeak phases in a swallow using esophageal pressure topography. Neurogastroenterology and Motility, 2017, 29, e13099.	3.0	6
66	Highâ€resolution manometry assessment of the lower esophageal sphincter afterâ€contraction: Normative values and clinical correlation. Neurogastroenterology and Motility, 2018, 30, e13156.	3.0	6
67	Does the Bravoâ,,¢ pH capsule affect esophageal motor function?. Ecological Management and Restoration, 2007, 20, 406-410.	0.4	3
68	The dysphagia stress test for rapid assessment of swallowing difficulties in esophageal conditions. Neurogastroenterology and Motility, 2019, 31, e13512.	3.0	3
69	A new confusing model of GERD: A spectrum of phenotypic progression. Digestive and Liver Disease, 2006, 38, 648-651.	0.9	2
70	Initial proton pump inhibitor characteristics associated with long-term prescriptions in US veterans diagnosed with gastro-oesophageal reflux disease. Journal of Pharmaceutical Health Services Research, 2014, 5, 157-164.	0.6	1
71	Response to Furuzawaâ€Carballeda <i>etÂal</i> Neurogastroenterology and Motility, 2016, 28, 609-609.	3.0	0
72	Reply. Clinical Gastroenterology and Hepatology, 2017, 15, 1314-1315.	4.4	0

#	Article	IF	CITATIONS
73	President of the International Society of Diseases of the Esophagus (ISDE) 2006–2008. Ecological Management and Restoration, 2020, 33, .	0.4	0