Sunny C Jiang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4786286/sunny-c-jiang-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 120
 5,290
 41
 70

 papers
 citations
 h-index
 g-index

 124
 5,951
 6.5
 5.89

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
120	Suspended particles are hotspots for pathogen-related bacteria and ARGs in coastal beach waters of northern China <i>Science of the Total Environment</i> , 2022 , 817, 153004	10.2	1
119	Integrating Virus Monitoring Strategies for Safe Non-Potable Water Reuse. <i>Water (Switzerland)</i> , 2022 , 14, 1187	3	1
118	Development of a proof-of-concept microfluidic portable pathogen analysis system for water quality monitoring <i>Science of the Total Environment</i> , 2021 , 813, 152556	10.2	2
117	Efficient removal of selenate in water by cationic poly(allyltrimethylammonium) grafted chitosan and biochar composite. <i>Environmental Research</i> , 2021 , 194, 110667	7.9	11
116	A dose response model for Staphylococcus aureus. <i>Scientific Reports</i> , 2021 , 11, 12542	4.9	
115	Acquisition of antibiotic resistance genes on human skin after swimming in the ocean. <i>Environmental Research</i> , 2021 , 197, 110978	7.9	4
114	Investigations of soil autotrophic ammonia oxidizers in farmlands through genetics and big data analysis. <i>Science of the Total Environment</i> , 2021 , 777, 146091	10.2	5
113	Quantifying the risk of indoor drainage system in multi-unit apartment building as a transmission route of SARS-CoV-2. <i>Science of the Total Environment</i> , 2021 , 762, 143056	10.2	10
112	Assessing the Risk of Legionella Infection through Showering with Untreated Rain Cistern Water in a Tropical Environment. <i>Water (Switzerland)</i> , 2021 , 13, 889	3	0
111	Detection of SARS-CoV-2 in Wastewater: Community Variability, Temporal Dynamics, and Genotype Diversity. <i>ACS ES&T Water</i> , 2021 , 1, 1816-1825		0
110	16S rRNA gene sequencing data of the human skin microbiome before and after swimming in the ocean. <i>Data in Brief</i> , 2021 , 37, 107207	1.2	O
109	Mitigation of biofouling in agricultural water distribution systems with nanobubbles. <i>Environment International</i> , 2020 , 141, 105787	12.9	11
108	An improved CFD modeling approach applied for the simulation of gasIlquid interaction in the ozone contactor along with structure optimization. <i>Chemical Engineering Journal</i> , 2020 , 384, 123322	14.7	6
107	Assessing the water quality impacts of two Category-5 hurricanes on St. Thomas, Virgin Islands. <i>Water Research</i> , 2020 , 171, 115440	12.5	10
106	Can cyanotoxins penetrate human skin during water recreation to cause negative health effects?. <i>Harmful Algae</i> , 2020 , 98, 101872	5.3	9
105	When the fourth water and digital revolution encountered COVID-19. <i>Science of the Total Environment</i> , 2020 , 744, 140980	10.2	30
104	Balancing carbon, nitrogen and phosphorus concentration in seawater as a strategy to prevent accelerated membrane biofouling. <i>Water Research</i> , 2019 , 165, 114978	12.5	15

103	Concentrating ammonium in wastewater by forward osmosis using a surface modified nanofiltration membrane. <i>Environmental Science: Water Research and Technology</i> , 2019 , 5, 246-255	4.2	27
102	Storm runoff differentially influences the nutrient concentrations and microbial contamination at two distinct beaches in northern China. <i>Science of the Total Environment</i> , 2019 , 663, 400-407	10.2	13
101	The risk of Staphylococcus skin infection during space travel and mitigation strategies. <i>Microbial Risk Analysis</i> , 2019 , 11, 23-30	1.6	2
100	Alterations of the human skin microbiome after ocean water exposure. <i>Marine Pollution Bulletin</i> , 2019 , 145, 595-603	6.7	11
99	Current technologies and future directions for treating petroleum refineries and petrochemical plants (PRPP) wastewaters. <i>Journal of Environmental Chemical Engineering</i> , 2019 , 7, 103326	6.8	41
98	A dose response model for quantifying the infection risk of antibiotic-resistant bacteria. <i>Scientific Reports</i> , 2019 , 9, 17093	4.9	12
97	Application of unstructured kinetic models to predict microcystin biodegradation: Towards a practical approach for drinking water treatment. <i>Water Research</i> , 2019 , 149, 617-631	12.5	6
96	Quantitative microbial risk assessment of Greywater on-site reuse. <i>Science of the Total Environment</i> , 2018 , 635, 1507-1519	10.2	36
95	Shifts in dissolved organic matter and microbial community composition are associated with enhanced removal of fecal pollutants in urban stormwater wetlands. <i>Water Research</i> , 2018 , 137, 310-32	23 ^{12.5}	11
94	Sludge disinfection using electrical thermal treatment: The role of ohmic heating. <i>Science of the Total Environment</i> , 2018 , 615, 262-271	10.2	34
93	Incorporation of Quorum Sensing Inhibitors onto Reverse Osmosis Membranes for Biofouling Prevention in Seawater Desalination. <i>Environmental Engineering Science</i> , 2018 , 35, 261-269	2	13
92	Reusing Treated Wastewater: Consideration of the Safety Aspects Associated with Antibiotic-Resistant Bacteria and Antibiotic Resistance Genes. <i>Water (Switzerland)</i> , 2018 , 10, 244	3	52
91	Smartphone-Based in-Gel Loop-Mediated Isothermal Amplification (gLAMP) System Enables Rapid Coliphage MS2 Quantification in Environmental Waters. <i>Environmental Science & Environmental Science & Env</i>	10.3	31
90	The Effect of Organic Carbon Addition on the Community Structure and Kinetics of Microcystin-Degrading Bacterial Consortia. <i>Water (Switzerland)</i> , 2018 , 10, 1523	3	4
89	Surface modification of a microfiltration membrane for enhanced anti-biofouling capability in wastewater treatment process. <i>Journal of Water Process Engineering</i> , 2018 , 26, 55-61	6.7	5
88	A dynamic transport model for quantification of norovirus internalization in lettuce from irrigation water and associated health risk. <i>Science of the Total Environment</i> , 2018 , 643, 751-761	10.2	6
87	Investigation of compounds that degrade biofilm polysaccharides on reverse osmosis membranes from a full scale desalination plant to alleviate biofouling. <i>Desalination</i> , 2017 , 403, 88-96	10.3	21
86	Evaluation of the dry and wet weather recreational health risks in a semi-enclosed marine embayment in Southern California. <i>Water Research</i> , 2017 , 111, 318-329	12.5	5

85	Assessment of Cryptosporidium and norovirus risk associated with de facto wastewater reuse in Trinity River, Texas. <i>Microbial Risk Analysis</i> , 2017 , 5, 15-24	1.6	15
84	Investigation of Algal Biotoxin Removal during SWRO Desalination through a Materials Flow Analysis. <i>Water (Switzerland)</i> , 2017 , 9, 730	3	2
83	Soil invertebrates in Australian rain gardens and their potential roles in storage and processing of nitrogen. <i>Ecological Engineering</i> , 2016 , 97, 138-143	3.9	14
82	Detection and risk assessment of diarrheagenic E. coli in recreational beaches of Brazil. <i>Marine Pollution Bulletin</i> , 2016 , 109, 163-170	6.7	15
81	Sunlight-Activated Propidium Monoazide Pretreatment for Differentiation of Viable and Dead Bacteria by Quantitative Real-Time Polymerase Chain Reaction. <i>Environmental Science and Technology Letters</i> , 2016 , 3, 57-61	11	14
80	Inhibiting quorum sensing pathways to mitigate seawater desalination RO membrane biofouling. <i>Desalination</i> , 2016 , 393, 135-143	10.3	33
79	Electrochemical disinfection of toilet wastewater using wastewater electrolysis cell. <i>Water Research</i> , 2016 , 92, 164-72	12.5	123
78	Near Real-Time Flow Cytometry Monitoring of Bacterial and Viral Removal Efficiencies during Water Reclamation Processes. <i>Water (Switzerland)</i> , 2016 , 8, 464	3	13
77	Phytoplankton-Associated Bacterial Community Composition and Succession during Toxic Diatom Bloom and Non-Bloom Events. <i>Frontiers in Microbiology</i> , 2016 , 7, 1433	5.7	29
76	Evaluation of methods for reverse osmosis membrane integrity monitoring for wastewater reuse. Journal of Water Process Engineering, 2015 , 7, 161-168	6.7	18
75	Assessment of public health risk associated with viral contamination in harvested urban stormwater for domestic applications. <i>Science of the Total Environment</i> , 2015 , 523, 95-108	10.2	64
74	From Rain Tanks to Catchments: Use of Low-Impact Development To Address Hydrologic Symptoms of the Urban Stream Syndrome. <i>Environmental Science & Environmental Science & Env</i>	0 ^{10.3}	100
73	Human and environmental health risks and benefits associated with use of urban stormwater. Wiley Interdisciplinary Reviews: Water, 2015 , 2, 683-699	5.7	25
72	Evaluating options for balancing the water-electricity nexus in California: part 1securing water availability. <i>Science of the Total Environment</i> , 2014 , 497-498, 697-710	10.2	24
71	Evaluating options for balancing the water-electricity nexus in California: Part 2greenhouse gas and renewable energy utilization impacts. <i>Science of the Total Environment</i> , 2014 , 497-498, 711-724	10.2	24
70	Host-specific adaptation governs the interaction of the marine diatom, Pseudo-nitzschia and their microbiota. <i>ISME Journal</i> , 2014 , 8, 63-76	11.9	85
69	Chemical and Biological Analyses of Bay Sediment Where Magnesium Oxide Compounds Are Applied. <i>Environmental Engineering Research</i> , 2014 , 19, 101-105	3.6	6
68	Reevaluation of health risk benchmark for sustainable water practice through risk analysis of rooftop-harvested rainwater. <i>Water Research</i> , 2013 , 47, 7273-86	12.5	34

(2009-2013)

67	Substrate removal and electricity generation in a membrane-less microbial fuel cell for biological treatment of wastewater. <i>Bioresource Technology</i> , 2013 , 138, 109-16	11	49
66	Investigation of environmental influences on membrane biofouling in a Southern California desalination pilot plant. <i>Desalination</i> , 2013 , 319, 1-9	10.3	51
65	Marine bacterial biofilm formation and its responses to periodic hyperosmotic stress on a flat sheet membrane for seawater desalination pretreatment. <i>Journal of Membrane Science</i> , 2013 , 425-426, 182-1	8 9 6	18
64	Quantitative microbial risk assessment of pathogenic vibrios in marine recreational waters of southern california. <i>Applied and Environmental Microbiology</i> , 2013 , 79, 294-302	4.8	37
63	Comparison of recreational health risks associated with surfing and swimming in dry weather and post-storm conditions at Southern California beaches using quantitative microbial risk assessment (QMRA). <i>Marine Pollution Bulletin</i> , 2012 , 64, 912-8	6.7	32
62	Taking the "waste" out of "wastewater" for human water security and ecosystem sustainability. <i>Science</i> , 2012 , 337, 681-6	33.3	394
61	Composition and variability of biofouling organisms in seawater reverse osmosis desalination plants. <i>Applied and Environmental Microbiology</i> , 2011 , 77, 4390-8	4.8	58
60	Transfer of cholera toxin genes from O1 to non-O1/O139 strains by vibriophages from California coastal waters. <i>Journal of Applied Microbiology</i> , 2010 , 108, 1015-1022	4.7	12
59	Ecology of coliphages in southern California coastal waters. <i>Journal of Applied Microbiology</i> , 2010 , 109, 431-440	4.7	7
58	Detection of infectious adenoviruses in environmental waters by fluorescence-activated cell sorting assay. <i>Applied and Environmental Microbiology</i> , 2010 , 76, 1442-8	4.8	36
57	Ecological control of fecal indicator bacteria in an urban stream. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	55
56	Concentration of viruses from environmental waters using nanoalumina fiber filters. <i>Journal of Microbiological Methods</i> , 2010 , 81, 33-8	2.8	29
55	Molecular characterization of Vibrio cholerae outbreak strains with altered El Tor biotype from southern India. <i>World Journal of Microbiology and Biotechnology</i> , 2010 , 26, 281-287	4.4	41
54	Detection and quantification of enteroviruses in coastal seawaters from Bohai Bay, Tianjin, China. <i>Journal of Environmental Sciences</i> , 2010 , 22, 150-4	6.4	11
53	Genetic determinants of virulence, antibiogram and altered biotype among the Vibrio cholerae O1 isolates from different cholera outbreaks in India. <i>Infection, Genetics and Evolution</i> , 2010 , 10, 815-9	4.5	36
52	Sanitary Microbiology of the Production and Distribution of Desalinated Drinking Water 2010 , 107-121		
51	Quantification of Enterococci and Human Adenoviruses in Environmental Samples by Real-Time PCR. <i>Applied and Environmental Microbiology</i> , 2009 , 75, 557-557	4.8	2
50	Evaluation of four cell lines for assay of infectious adenoviruses in water samples. <i>Journal of Water and Health</i> , 2009 , 7, 650-6	2.2	19

49	Lysogens and free viruses in fresh, brackish, and marine waters: a Bayesian analysis. <i>FEMS Microbiology Ecology</i> , 2009 , 69, 243-54	4.3	4
48	Web-based investigation of water associated illness in marine bathers. <i>Environmental Research</i> , 2008 , 106, 101-9	7.9	19
47	Genetic diversity of human polyomavirus JCPyV in Southern California wastewater. <i>Journal of Water and Health</i> , 2008 , 6, 533-8	2.2	10
46	Microbial source tracking in a small southern California urban watershed indicates wild animals and growth as the source of fecal bacteria. <i>Applied Microbiology and Biotechnology</i> , 2007 , 76, 927-34	5.7	61
45	Seasonal detection of human viruses and coliphage in Newport Bay, California. <i>Applied and Environmental Microbiology</i> , 2007 , 73, 6468-74	4.8	54
44	Isolation and genetic analysis of haloalkaliphilic bacteriophages in a North American Soda Lake. <i>Microbial Ecology</i> , 2006 , 51, 543-54	4.4	12
43	Response to Comment on Coastal Water Quality Impact of Stormwater Runoff from an Urban Watershed in Southern California (Environmental Science & Eamp; Technology, 2006, 40, 3441-3442)	10.3	
42	Flow fingerprinting fecal pollution and suspended solids in stormwater runoff from an urban coastal watershed. <i>Environmental Science & Environmental </i>	10.3	77
41	Human adenoviruses in water: occurrence and health implications: a critical review. <i>Environmental Science & Environmental Sci</i>	10.3	154
40	Real-time quantitative PCR for enteric adenovirus serotype 40 in environmental waters. <i>Canadian Journal of Microbiology</i> , 2005 , 51, 393-8	3.2	36
39	Coastal water quality impact of stormwater runoff from an urban watershed in southern California. <i>Environmental Science & Environmental Science & Env</i>	10.3	127
38	Real-time PCR quantification of human adenoviruses in urban rivers indicates genome prevalence but low infectivity. <i>Applied and Environmental Microbiology</i> , 2005 , 71, 7426-33	4.8	124
37	Quantification of enterococci and human adenoviruses in environmental samples by real-time PCR. <i>Applied and Environmental Microbiology</i> , 2005 , 71, 2250-5	4.8	191
36	Spatial and temporal variability of prokaryotes, viruses, and viral infections of prokaryotes in an alkaline, hypersaline lake. <i>Aquatic Microbial Ecology</i> , 2005 , 41, 247-260	1.1	31
35	PCR detection of pathogenic viruses in southern California urban rivers. <i>Journal of Applied Microbiology</i> , 2004 , 97, 17-28	4.7	110
34	Impacts of beach closures on perceptions of swimming-related health risk in Orange County, California. <i>Marine Pollution Bulletin</i> , 2004 , 48, 132-6	6.7	15
33	Abundance, distribution, and diversity of viruses in alkaline, hypersaline Mono Lake, California. <i>Microbial Ecology</i> , 2004 , 47, 9-17	4.4	52
32	Recommendations for microbial source tracking: Lessons from a methods comparison study. Journal of Water and Health, 2003, 1, 225-231	2.2	50

(2000-2003)

31	Use of viral pathogens and indicators to differentiate between human and non-human fecal contamination in a microbial source tracking comparison study. <i>Journal of Water and Health</i> , 2003 , 1, 195-207	2.2	80
30	Evaluation of recreational health risk in coastal waters based on enterococcus densities and bathing patterns. <i>Environmental Health Perspectives</i> , 2003 , 111, 598-603	8.4	36
29	The vertical distribution and diversity of marine bacteriophage at a station off Southern California. <i>Microbial Ecology</i> , 2003 , 45, 399-410	4.4	24
28	Application of enterococci antibiotic resistance patterns for contamination source identification at Huntington Beach, California. <i>Marine Pollution Bulletin</i> , 2003 , 46, 748-55	6.7	51
27	Isolation and characterization of an atrazine-degrading bacterium from industrial wastewater in China. <i>Letters in Applied Microbiology</i> , 2003 , 36, 272-6	2.9	92
26	Prevalence of cholera toxin genes (ctxA and zot) among non-O1/O139 Vibrio cholerae strains from Newport Bay, California. <i>Applied and Environmental Microbiology</i> , 2003 , 69, 7541-4	4.8	29
25	Predictability of Vibrio cholerae in Chesapeake Bay. <i>Applied and Environmental Microbiology</i> , 2003 , 69, 2773-85	4.8	154
24	Use of viral pathogens and indicators to differentiate between human and non-human fecal contamination in a microbial source tracking comparison study. <i>Journal of Water and Health</i> , 2003 , 1, 195-207	2.2	29
23	Recommendations for microbial source tracking: lessons from a methods comparison study. <i>Journal of Water and Health</i> , 2003 , 1, 225-31	2.2	12
22	Seasonal Abundance and Distribution of Vibrio cholerae in Coastal Waters Quantified by a 16S-23S Intergenic Spacer Probe. <i>Microbial Ecology</i> , 2001 , 42, 540-548	4.4	41
21	Vibrio cholerae in recreational beach waters and tributaries of Southern California. <i>Hydrobiologia</i> , 2001 , 460, 157-164	2.4	14
20	Molecular analysis of Vibrio cholerae O1, O139, non-O1, and non-O139 strains: clonal relationships between clinical and environmental isolates. <i>Applied and Environmental Microbiology</i> , 2001 , 67, 910-21	4.8	177
19	Vibrio cholerae in recreational beach waters and tributaries of Southern California 2001 , 157-164		
18	Human adenoviruses and coliphages in urban runoff-impacted coastal waters of Southern California. <i>Applied and Environmental Microbiology</i> , 2001 , 67, 179-84	4.8	261
17	Lysogeny and transduction. <i>Methods in Microbiology</i> , 2001 , 105-125	2.8	22
16	DETECTION OF HUMAN ADENOVIRUSES IN COASTAL WATERS OF SOUTHERN CALIFORNIA. Proceedings of the Water Environment Federation, 2000, 2000, 335-344		
15	Genetic diversity of clinical and environmental isolates of Vibrio cholerae determined by amplified fragment length polymorphism fingerprinting. <i>Applied and Environmental Microbiology</i> , 2000 , 66, 148-53	3 ^{4.8}	65
14	Genetic diversity of Vibrio cholerae in Chesapeake Bay determined by amplified fragment length polymorphism fingerprinting. <i>Applied and Environmental Microbiology</i> , 2000 , 66, 140-7	4.8	57

13	Significance of Lysogeny in the Marine Environment: Studies with Isolates and a Model of Lysogenic Phage Production. <i>Microbial Ecology</i> , 1998 , 35, 235-43	4.4	133
12	Gene transfer by transduction in the marine environment. <i>Applied and Environmental Microbiology</i> , 1998 , 64, 2780-7	4.8	217
11	Characterization of marine temperate phage-host systems isolated from Mamala Bay, Oahu, Hawaii. <i>Applied and Environmental Microbiology</i> , 1998 , 64, 535-42	4.8	59
10	Evidence for groundwater and surface marine water contamination by waste disposal wells in the Florida keys. <i>Water Research</i> , 1997 , 31, 1448-1454	12.5	70
9	Coliphage and indigenous phage in Mamala Bay, Oahu, Hawaii. <i>Applied and Environmental Microbiology</i> , 1997 , 63, 133-8	4.8	34
8	Occurrence of lysogenic bacteria in marine microbial communities as determined by prophage induction. <i>Marine Ecology - Progress Series</i> , 1996 , 142, 27-38	2.6	116
7	Viruses and DNA in Marine Environments 1996 , 115-124		2
6	Viral contribution to dissolved DNA in the marine environment as determined by differential centrifugation and kingdom probing. <i>Applied and Environmental Microbiology</i> , 1995 , 61, 317-25	4.8	43
5	Occurrence of fecal indicator bacteria in surface waters and the subsurface aquifer in Key Largo, Florida. <i>Applied and Environmental Microbiology</i> , 1995 , 61, 2235-41	4.8	57
4	Genetic diversity of related vibriophages isolated from marine environments around Florida and Hawaii, USA. <i>Marine Ecology - Progress Series</i> , 1995 , 120, 89-98	2.6	53
3	Seasonal and diel abundance of viruses and occurrence of lysogeny/bacteriocinogeny in the marine environment. <i>Marine Ecology - Progress Series</i> , 1994 , 104, 163-172	2.6	163
2	Viruses, bacterioplankton, and phyloplankton in the southeastern Gulf of Mexico: distribution and contribution to oceanic DNA pools. <i>Marine Ecology - Progress Series</i> , 1993 , 97, 1-10	2.6	80
1	Concentration of microbial populations from aquatic environments by Vortex Flow Filtration. Marine Ecology - Progress Series, 1992, 80, 101-107	2.6	20