Sven-Erik Dahlén

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4786078/publications.pdf

Version: 2024-02-01

93 papers 8,804 citations

35 h-index 91 g-index

95 all docs 95
docs citations

95 times ranked 7722 citing authors

#	Article	IF	CITATIONS
1	Plasma proteins elevated in severe asthma despite oral steroid use and unrelated to Type-2 inflammation. European Respiratory Journal, 2022, 59, 2100142.	3.1	10
2	Association of Differential Mast Cell Activation with Granulocytic Inflammation in Severe Asthma. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 397-411.	2.5	30
3	Urinary metabotype of severe asthma evidences decreased carnitine metabolism independent of oral corticosteroid treatment in the U-BIOPRED study. European Respiratory Journal, 2022, 59, 2101733.	3.1	13
4	Activation of succinate receptor 1 boosts human mast cell reactivity and allergic bronchoconstriction. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 2677-2687.	2.7	7
5	Effects of nonâ€steroidal antiâ€inflammatory drugs and other eicosanoid pathway modifiers on antiviral and allergic responses: EAACI task force on eicosanoids consensus report in times of COVIDâ€19. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 2337-2354.	2.7	9
6	Current perspective on eicosanoids in asthma and allergic diseases: EAACI Task Force consensus report, part I. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 114-130.	2.7	40
7	Sputum microbiome profiles identify severe asthma phenotypes of relative stability at 12 to 18 months. Journal of Allergy and Clinical Immunology, 2021, 147, 123-134.	1.5	51
8	Urinary Leukotriene E ₄ and Prostaglandin D ₂ Metabolites Increase in Adult and Childhood Severe Asthma Characterized by Type 2 Inflammation. A Clinical Observational Study. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 37-53.	2.5	49
9	AsthmaMap: An interactive knowledge repository for mechanisms of asthma. Journal of Allergy and Clinical Immunology, 2021, 147, 853-856.	1.5	6
10	YKLâ€40 is a proposed biomarker of inflammation and remodelling elevated in children with bronchopulmonary dysplasia compared to asthma. Acta Paediatrica, International Journal of Paediatrics, 2021, 110, 641-642.	0.7	2
11	Association of endopeptidases, involved in SARSâ€CoVâ€2 infection, with microbial aggravation in sputum of severe asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 1917-1921.	2.7	3
12	Selective inhibition of prostaglandin D ₂ biosynthesis in human mast cells to overcome need for multiple receptor antagonists: Biochemical consequences. Clinical and Experimental Allergy, 2021, 51, 594-603.	1.4	7
13	Distinct effects of antigen and compound 48/80 in the guinea pig trachea. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2270-2273.	2.7	1
14	Reply to Thomson: Exposure to Active and Passive Tobacco Smoke on Urinary Eicosanoid Metabolites in Type 2 Asthma. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 1204-1205.	2.5	4
15	COX-1 dependent biosynthesis of 15-hydroxyeicosatetraenoic acid in human mast cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158886.	1.2	2
16	Treating severe asthma: Targeting the ILâ€5 pathway. Clinical and Experimental Allergy, 2021, 51, 992-1005.	1.4	30
17	Formylpeptide receptors in GtoPdb v.2021.2. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	1
18	Medication Adherence in Patients With Severe Asthma Prescribed Oral Corticosteroids in the U-BIOPRED Cohort. Chest, 2021, 160, 53-64.	0.4	10

#	Article	IF	CITATIONS
19	Eicosanoid dysregulation and type 2 inflammation in AERD. Journal of Allergy and Clinical Immunology, 2021, 148, 1157-1160.	1.5	13
20	Distinct plasma biomarkers confirm the diagnosis of mastocytosis and identify increased risk of anaphylaxis. Journal of Allergy and Clinical Immunology, 2021, 148, 889-894.	1.5	12
21	Prostaglandin D2 inhibits mediator release and antigen induced bronchoconstriction in the Guinea pig trachea by activation of DP1 receptors. European Journal of Pharmacology, 2021, 907, 174282.	1.7	3
22	Tissue-specific transcriptional imprinting and heterogeneity in human innate lymphoid cells revealed by full-length single-cell RNA-sequencing. Cell Research, 2021, 31, 554-568.	5.7	97
23	Exhaled volatile organic compounds as markers for medication use in asthma. European Respiratory Journal, 2020, 55, 1900544.	3.1	27
24	IL-13 and IL-4, but not IL-5 nor IL-17A, induce hyperresponsiveness in isolated human small airways. Journal of Allergy and Clinical Immunology, 2020, 145, 808-817.e2.	1.5	76
25	eNose breath prints as a surrogate biomarker for classifying patients with asthma by atopy. Journal of Allergy and Clinical Immunology, 2020, 146, 1045-1055.	1.5	22
26	Lipoxin A4 reduces house dust mite and TNF $\hat{1}$ ±-induced hyperreactivity in the mouse trachea. Prostaglandins and Other Lipid Mediators, 2020, 149, 106428.	1.0	4
27	Eosinophils synthesize trihydroxyoctadecenoic acids (TriHOMEs) via a 15-lipoxygenase dependent process. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158611.	1.2	10
28	Back to the future: re-establishing guinea pig <i>in vivo</i> asthma models. Clinical Science, 2020, 134, 1219-1242.	1.8	26
29	Leukotriene receptors (version 2020.3) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2020, 2020, .	0.2	0
30	Food allergy-related concerns during the transition to self-management. Allergy, Asthma and Clinical Immunology, 2019, 15, 54.	0.9	7
31	Mannitol triggers mast cell–dependent contractions of human small bronchi and prostacyclin bronchoprotection. Journal of Allergy and Clinical Immunology, 2019, 144, 984-992.	1.5	12
32	Stratification of asthma phenotypes by airway proteomic signatures. Journal of Allergy and Clinical Immunology, 2019, 144, 70-82.	1.5	59
33	IL-17–high asthma with features of a psoriasis immunophenotype. Journal of Allergy and Clinical Immunology, 2019, 144, 1198-1213.	1.5	80
34	Epithelial dysregulation in obese severe asthmatics with gastro-oesophageal reflux. European Respiratory Journal, 2019, 53, 1900453.	3.1	15
35	Quantitative metabolic profiling of urinary eicosanoids for clinical phenotyping. Journal of Lipid Research, 2019, 60, 1164-1173.	2.0	20
36	Toward clinically applicable biomarkers for asthma: An <scp>EAACI</scp> position paper. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 1835-1851.	2.7	135

#	Article	IF	CITATIONS
37	Identification and prospective stability of electronic nose (eNose)–derived inflammatory phenotypes in patients with severe asthma. Journal of Allergy and Clinical Immunology, 2019, 143, 1811-1820.e7.	1.5	74
38	Cytokine-induced endogenous production of prostaglandin D2 is essential for human group 2 innate lymphoid cell activation. Journal of Allergy and Clinical Immunology, 2019, 143, 2202-2214.e5.	1.5	57
39	Fixed airflow obstruction relates to eosinophil activation in asthmatics. Clinical and Experimental Allergy, 2019, 49, 155-162.	1.4	24
40	Leukotriene receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	2
41	Formylpeptide receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	0
42	Leukotriene E4 induces airflow obstruction and mast cell activation through the cysteinyl leukotriene type 1 receptor. Journal of Allergy and Clinical Immunology, 2018, 142, 1080-1089.	1.5	36
43	Functional phenotypes determined by fluctuation-based clustering of lung function measurements in healthy and asthmatic cohort participants. Thorax, 2018, 73, 107-115.	2.7	15
44	Prostaglandin E 2 suppresses human group 2 innate lymphoid cell function. Journal of Allergy and Clinical Immunology, 2018, 141, 1761-1773.e6.	1.5	119
45	Soluble epoxide hydrolase derived lipid mediators are elevated in bronchoalveolar lavage fluid from patients with sarcoidosis: a cross-sectional study. Respiratory Research, 2018, 19, 236.	1.4	4
46	Lipid phenotyping of lung epithelial lining fluid in healthy human volunteers. Metabolomics, 2018, 14, 123.	1.4	17
47	An Optimized Protocol for the Isolation and Functional Analysis of Human Lung Mast Cells. Frontiers in Immunology, 2018, 9, 2193.	2.2	31
48	Prominent release of lipoxygenase generated mediators in a murine house dust mite-induced asthma model. Prostaglandins and Other Lipid Mediators, 2018, 137, 20-29.	1.0	7
49	Lipid Mediator Quantification in Isolated Human and Guinea Pig Airways: An Expanded Approach for Respiratory Research. Analytical Chemistry, 2018, 90, 10239-10248.	3.2	33
50	Large-Scale Label-Free Quantitative Mapping of the Sputum Proteome. Journal of Proteome Research, 2018, 17, 2072-2091.	1.8	16
51	RNA-containing exosomes in induced sputum of asthmatic patients. Journal of Allergy and Clinical Immunology, 2017, 140, 1459-1461.e2.	1.5	25
52	Asthma research in Europe: a transformative agenda for innovation andÂcompetitiveness. European Respiratory Journal, 2017, 49, 1602294.	3.1	7
53	A longitudinal assessment of circulating <scp>YKL</scp> â€40 levels in preschool children with wheeze. Pediatric Allergy and Immunology, 2017, 28, 79-85.	1.1	15
54	Human lung natural killer cells are predominantly comprised of highly differentiated hypofunctional CD69 â° CD56 dim cells. Journal of Allergy and Clinical Immunology, 2017, 139, 1321-1330.e4.	1,5	113

#	Article	IF	CITATIONS
55	Impaired health-related quality of life in adolescents with allergy to staple foods. Clinical and Translational Allergy, 2016, 6, 37.	1.4	29
56	Linoleic acid-derived lipid mediators increase in a female-dominated subphenotype of COPD. European Respiratory Journal, 2016, 47, 1645-1656.	3.1	61
57	Activated prostaglandin D2 receptors on macrophages enhance neutrophil recruitment into the lung. Journal of Allergy and Clinical Immunology, 2016, 137, 833-843.	1.5	61
58	Increased YKL-40 and Chitotriosidase in Asthma and Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 131-142.	2.5	107
59	The Effect of Omega-3 Fatty Acids on Bronchial Hyperresponsiveness, Sputum Eosinophilia, and Mast Cell Mediators in Asthma. Chest, 2015, 147, 397-405.	0.4	36
60	Socioâ€economic impact of objectivelyâ€diagnosed allergy to staple foods in children and adolescents. Clinical and Translational Allergy, 2015, 5, P14.	1.4	1
61	Human tissue models for a human disease: what are the barriers?. Thorax, 2015, 70, 695-697.	2.7	15
62	The association between asthma and rhinitis is stable over time despite diverging trends in prevalence. Respiratory Medicine, 2015, 109, 312-319.	1.3	8
63	Predicting asthma morbidity in children using proposed markers of Th2â€ŧype inflammation. Pediatric Allergy and Immunology, 2015, 26, 772-779.	1.1	52
64	Urinary excretion of lipid mediators in response to repeated eucapnic voluntary hyperpnea in asthmatic subjects. Journal of Applied Physiology, 2015, 119, 272-279.	1.2	13
65	Household Costs Associated with Objectively Diagnosed Allergy to Staple Foods in Children and Adolescents. Journal of Allergy and Clinical Immunology: in Practice, 2015, 3, 68-75.	2.0	55
66	Prostaglandin E2 inhibits mast cell–dependent bronchoconstriction in human small airways through the E prostanoid subtype 2 receptor. Journal of Allergy and Clinical Immunology, 2015, 136, 1232-1239.e1.	1.5	78
67	Clinical and inflammatory characteristics of the European U-BIOPRED adult severe asthma cohort. European Respiratory Journal, 2015, 46, 1308-1321.	3.1	434
68	Quality of life in relation to the traffic pollution indicators NO ₂ and NO _x : results from the Swedish GA ² LEN survey. BMJ Open Respiratory Research, 2014, 1, e000039.	1.2	14
69	Bitter taste receptor (TAS2R) agonists inhibit IgE-dependent mast cell activation. Journal of Allergy and Clinical Immunology, 2014, 134, 475-478.	1.5	51
70	Effects of selective COX-2 inhibition on allergen-induced bronchoconstriction and airway inflammation in asthma. Journal of Allergy and Clinical Immunology, 2014, 134, 306-313.	1.5	45
71	TSLP in Asthma — A New Kid on the Block?. New England Journal of Medicine, 2014, 370, 2144-2145.	13.9	13
72	International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. European Respiratory Journal, 2014, 43, 343-373.	3.1	2,898

#	Article	IF	CITATIONS
73	Bitter taste receptor agonists mediate relaxation of human and rodent vascular smooth muscle. European Journal of Pharmacology, 2014, 740, 302-311.	1.7	46
74	Flushing, fatigue, and recurrent anaphylaxis: a delayed diagnosis of mastocytosis. Lancet, The, 2014, 383, 1608.	6.3	23
75	Enhanced expression of neuropeptide S (NPS) receptor in eosinophils from severe asthmatics and subjects with total IgE above 100IU/ml. Peptides, 2014, 51, 100-109.	1.2	17
76	Toll-Like Receptor Ligands LPS and Poly (I:C) Exacerbate Airway Hyperresponsiveness in a Model of Airway Allergy in Mice, Independently of Inflammation. PLoS ONE, 2014, 9, e104114.	1.1	36
77	Quantification of Lipid Mediator Metabolites in Human Urine from Asthma Patients by Electrospray Ionization Mass Spectrometry: Controlling Matrix Effects. Analytical Chemistry, 2013, 85, 7866-7874.	3.2	44
78	Bronchial responsiveness to leukotriene D4 is resistant to inhaled fluticasone propionate. Journal of Allergy and Clinical Immunology, 2006, 118, 78-83.	1.5	43
79	Treatment of asthma with antileukotrienes: First line or last resort therapy?. European Journal of Pharmacology, 2006, 533, 40-56.	1.7	106
80	Improvement of Aspirin-Intolerant Asthma by Montelukast, a Leukotriene Antagonist. American Journal of Respiratory and Critical Care Medicine, 2002, 165, 9-14.	2.5	307
81	An alternative pathway for metabolism of leukotriene D4: effects on contractions to cysteinyl-leukotrienes in the guinea-pig trachea. British Journal of Pharmacology, 2001, 133, 1134-1144.	2.7	23
82	Pulmonary Gas Exchange and Sputum Cellular Responses to Inhaled Leukotriene D4in Asthma. American Journal of Respiratory and Critical Care Medicine, 2001, 164, 202-206.	2. 5	32
83	Leukotriene receptors. Clinical Reviews in Allergy and Immunology, 1999, 17, 179-191.	2.9	10
84	Benefits from Adding the 5-Lipoxygenase Inhibitor Zileuton to Conventional Therapy in Aspirin-intolerant Asthmatics. American Journal of Respiratory and Critical Care Medicine, 1998, 157, 1187-1194.	2.5	372
85	Increased urinary excretion of the prostaglandin D2 metabolite $9\hat{l}\pm,11\hat{l}^2$ -prostaglandin F2 after aspirin challenge supports mast cell activation in aspirin-induced airway obstruction. Journal of Allergy and Clinical Immunology, 1996, 98, 421-432.	1.5	163
86	Urinary Excretion of Leukotriene E4and 11-dehydro-Thromboxane B2in Response to Bronchial Provocations with Allergen, Aspirin, Leukotriene D4, and Histamine in Asthmatics. The American Review of Respiratory Disease, 1992, 146, 96-103.	2.9	293
87	Dual Inhibitory Action of Nedocromil Sodium on Antigen-Induced Inflammation. Drugs, 1989, 37, 63-68.	4.9	23
88	Mechanisms of leukotrieneâ€induced contractions of guinea pig airways: Leukotriene C ₄ has a potent direct action whereas leukotriene B ₄ acts indirectly. Acta Physiologica Scandinavica, 1983, 118, 393-403.	2.3	78
89	The significance of liberated cyclooxygenase products for the pulmonary and cardiovascular actions of leukotriene C ₄ in the guinea pig depends upon the route of administration. Acta Physiologica Scandinavica, 1983, 118, 415-421.	2.3	35
90	Leukotriene C4 affects pulmonary and cardiovascular dynamics in monkey. Nature, 1982, 295, 327-329.	13.7	198

Sven-Erik Dahlén

#	Article	IF	CITATIONS
91	Identification and biological activity of novel ï‰-oxidized metabolites of leukotriene B4 from human leukocytes. FEBS Letters, 1981, 130, 107-112.	1.3	313
92	Leukotrienes are potent constrictors of human bronchi. Nature, 1980, 288, 484-486.	13.7	944
93	Biological profile of leukotrienes C ₄ and D ₄ . Acta Physiologica Scandinavica, 1980, 110, 331-333.	2.3	239