
Saglara S Mandzhieva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/478592/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Potentially toxic elements in surface soils of the Lower Don floodplain and the Taganrog Bay coast: sources, spatial distribution and pollution assessment. Environmental Geochemistry and Health, 2023, 45, 101-119.	1.8	3
2	The effect of resource-saving tillage technologies on the mobility, distribution and migration of trace elements in soil. Environmental Geochemistry and Health, 2023, 45, 85-100.	1.8	4
3	Trichoderma viride—Mediated Modulation of Oxidative Stress Network in Potato Challenged with Alternaria solani. Journal of Plant Growth Regulation, 2023, 42, 1919-1936.	2.8	7
4	Bacillus spp. as Bio-factories for Antifungal Secondary Metabolites: Innovation Beyond Whole Organism Formulations. Microbial Ecology, 2023, 86, 1-24.	1.4	24
5	Application of XAFS and XRD methods for describing the copper and zinc adsorption characteristics in hydromorphic soils. Environmental Geochemistry and Health, 2022, 44, 335-347.	1.8	9
6	Geochemical transformation of soil cover and vegetation in a drained floodplain lake affected by long-term discharge of effluents from rayon industry plants, lower Don River Basin, Southern Russia. Environmental Geochemistry and Health, 2022, 44, 349-368.	1.8	16
7	Spatial distribution of heavy metals in soils of the flood plain of the Seversky Donets River (Russia) based on geostatistical methods. Environmental Geochemistry and Health, 2022, 44, 319-333.	1.8	16
8	Metal-Based Green Synthesized Nanoparticles: Boon for Sustainable Agriculture and Food Security. IEEE Transactions on Nanobioscience, 2022, 21, 44-54.	2.2	15
9	Analysis and assessment of heavy metal contamination in the vicinity of Lake Atamanskoe (Rostov) Tj ETQq1 1 0.7 44, 511-526.	784314 rg 1.8	BT /Overloc 5
10	Influence of soil pollution on the morphology of roots and leaves of Verbascum thapsus L. Environmental Geochemistry and Health, 2022, 44, 83-98.	1.8	5
11	Soil organic matter and biological activity under long-term contamination with copper. Environmental Geochemistry and Health, 2022, 44, 387-398.	1.8	12
12	Intra-soil waste recycling provides safety of environment. Environmental Geochemistry and Health, 2022, 44, 1355-1376.	1.8	6
13	Effects of ZnO nanoparticles and its bulk form on growth, antioxidant defense system and expression of oxidative stress related genes in Hordeum vulgare L. Chemosphere, 2022, 287, 132167.	4.2	36
14	Biochar-assisted Fenton-like oxidation of benzo[a]pyrene-contaminated soil. Environmental Geochemistry and Health, 2022, 44, 195-206.	1.8	11
15	Pollution impact on microbial communities composition in natural and anthropogenically modified soils of Southern Russia. Microbiological Research, 2022, 254, 126913.	2.5	17
16	Sustainable Amelioration of Heavy Metals in Soil Ecosystem: Existing Developments to Emerging Trends. Minerals (Basel, Switzerland), 2022, 12, 85.	0.8	25
17	Visible-Light-Driven Reduced Graphite Oxide as a Metal-Free Catalyst for Degradation of Colored Wastewater. Nanomaterials, 2022, 12, 374.	1.9	2
18	Plant Nutrition under Climate Change and Soil Carbon Sequestration. Sustainability, 2022, 14, 914.	1.6	55

#	Article	IF	CITATIONS
19	Microplastic Pollution: An Emerging Threat to Terrestrial Plants and Insights into Its Remediation Strategies. Plants, 2022, 11, 340.	1.6	25
20	Nanotechnology in the Restoration of Polluted Soil. Nanomaterials, 2022, 12, 769.	1.9	49
21	Nanobionics in Crop Production: An Emerging Approach to Modulate Plant Functionalities. Plants, 2022, 11, 692.	1.6	20
22	A Review on Coagulation/Flocculation in Dewatering of Coal Slurry. Water (Switzerland), 2022, 14, 918.	1.2	20
23	Decrypting the synergistic action of the Fenton process and biochar addition for sustainable remediation of real technogenic soil from PAHs and heavy metals. Environmental Pollution, 2022, 303, 119096.	3.7	11
24	Features of the polycyclic aromatic hydrocarbon's spatial distribution in the soils of the Don River delta. Environmental Geochemistry and Health, 2022, , 1.	1.8	4
25	Surfactant pollution, an emerging threat to ecosystem: Approaches for effective bacterial degradation. Journal of Applied Microbiology, 2022, 133, 1229-1244.	1.4	31
26	The Role of NO in the Amelioration of Heavy Metal Stress in Plants by Individual Application or in Combination with Phytohormones, Especially Auxin. Sustainability, 2022, 14, 8400.	1.6	2
27	The toxic effect of CuO of different dispersion degrees on the structure and ultrastructure of spring barley cells (Hordeum sativum distichum). Environmental Geochemistry and Health, 2021, 43, 1673-1687.	1.8	27
28	Effects of benzo[a]pyrene toxicity on morphology and ultrastructure of Hordeum sativum. Environmental Geochemistry and Health, 2021, 43, 1551-1562.	1.8	19
29	The influence of application of biochar and metal-tolerant bacteria in polluted soil on morpho-physiological and anatomical parameters of spring barley. Environmental Geochemistry and Health, 2021, 43, 1477-1489.	1.8	15
30	Speciation of Zn and Cu in Technosol and evaluation of a sequential extraction procedure using XAS, XRD and SEM–EDX analyses. Environmental Geochemistry and Health, 2021, 43, 2301-2315.	1.8	20
31	Assessing the toxicity and accumulation of bulk- and nano-CuO in Hordeum sativum L. Environmental Geochemistry and Health, 2021, 43, 2443-2454.	1.8	12
32	Environmental and human health risk assessment of potentially toxic elements in soils around the largest coal-fired power station in Southern Russia. Environmental Geochemistry and Health, 2021, 43, 2285-2300.	1.8	33
33	Nitrogen state of Haplic Chernozem of the European part of Southern Russia in the implementation of resourceâ€saving technologies. Journal of the Science of Food and Agriculture, 2021, 101, 2312-2318.	1.7	2
34	The influence of long-term Zn and Cu contamination in Spolic Technosols on water-soluble organic matter and soil biological activity. Ecotoxicology and Environmental Safety, 2021, 208, 111471.	2.9	19
35	Thermodynamic mathematical model of the Kastanozem complex and new principles of sustainable semiarid protective silviculture management. Environmental Research, 2021, 194, 110605.	3.7	17
36	Sustainability of agricultural and wild cereals to aerotechnogenic exposure. Environmental Geochemistry and Health, 2021, 43, 1427-1439.	1.8	10

#	Article	IF	CITATIONS
37	Bioindication of soil pollution in the delta of the Don River and the coast of the Taganrog Bay with heavy metals based on anatomical, morphological and biogeochemical studies of macrophyte (Typha) Tj ETQq1	1 017484314	l ng®T ∕Overl
38	Heavy metals in agricultural crops of Rostov region through the example of soft wheat (Triticum) Tj ETQq0 0 0 rg	gBT/Overlo 0.2	ck 10 Tf 50 7
39	Establishment of regional background for heavy metals in the soils of the Lower Don and the Taganrog Bay coast. E3S Web of Conferences, 2021, 265, 03004.	0.2	0
40	The Morphological and Functional Organization of Cattails Typha laxmannii Lepech. and Typha australis Schum. and Thonn. under Soil Pollution by Potentially Toxic Elements. Water (Switzerland), 2021, 13, 227.	1.2	8
41	Assessment of Ecological Condition of Haplic Chernozem Calcic Contaminated with Petroleum Hydrocarbons during Application of Bioremediation Agents of Various Natures. Land, 2021, 10, 169.	1.2	14
42	Transformation of copper oxide and copper oxide nanoparticles in the soil and their accumulation by Hordeum sativum. Environmental Geochemistry and Health, 2021, 43, 1655-1672.	1.8	19
43	Recent Developments in Enzymatic Antioxidant Defence Mechanism in Plants with Special Reference to Abiotic Stress. Biology, 2021, 10, 267.	1.3	228
44	Data on the polymorphic sites in the chloroplast genomes of seven perennial Helianthus species. Data in Brief, 2021, 35, 106904.	0.5	0
45	Exchangeable form of potentially toxic elements in floodplain soils along the river-marine systems of Southern Russia. Eurasian Journal of Soil Science, 2021, 10, 132-141.	0.2	4
46	Effect of nanomaterials on remediation of polycyclic aromatic hydrocarbons-contaminated soils: A review. Journal of Environmental Management, 2021, 284, 112023.	3.8	35
47	The Effect of Granular Activated Carbon and Biochar on the Availability of Cu and Zn to Hordeum sativum Distichum in Contaminated Soil. Plants, 2021, 10, 841.	1.6	19
48	Influence of Silver Nanoparticles on the Biological Indicators of Haplic Chernozem. Plants, 2021, 10, 1022.	1.6	21
49	Adaptive potential of Typha laxmannii Lepech to a heavy metal contaminated site. Plant and Soil, 2021, 465, 273-287.	1.8	4
50	Effects of Zinc Oxide Nanoparticles on Physiological and Anatomical Indices in Spring Barley Tissues. Nanomaterials, 2021, 11, 1722.	1.9	58
51	The Synthesis of Organoclays Based on Clay Minerals with Different Structural Expansion Capacities. Minerals (Basel, Switzerland), 2021, 11, 707.	0.8	23
52	Coping with the Challenges of Abiotic Stress in Plants: New Dimensions in the Field Application of Nanoparticles. Plants, 2021, 10, 1221.	1.6	112
53	Accumulation, translocation, and toxicity of arsenic in barley grown in contaminated soil. Plant and Soil, 2021, 467, 91-106.	1.8	6
54	Intra-Soil Milling for Stable Evolution and High Productivity of Kastanozem Soil. Processes, 2021, 9, 1302.	1.3	7

#	Article	IF	CITATIONS
55	Arsenic Remediation through Sustainable Phytoremediation Approaches. Minerals (Basel,) Tj ETQq1 1 0.784314	4 rgBT/Ove 0.8	erlock 10 Tf 50
56	Green synthesis of reduced graphene oxide-CoFe2O4 nanocomposite as a highly efficient visible-light-driven catalyst in photocatalysis and photo Fenton-like reaction. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 270, 115223.	1.7	19
57	Effects of Silicon and Silicon-Based Nanoparticles on Rhizosphere Microbiome, Plant Stress and Growth. Biology, 2021, 10, 791.	1.3	92
58	Insights into the Biosynthesis of Nanoparticles by the Genus <i>Shewanella</i> . Applied and Environmental Microbiology, 2021, 87, e0139021.	1.4	9
59	Sustainable Approach and Safe Use of Biochar and Its Possible Consequences. Sustainability, 2021, 13, 10362.	1.6	39
60	Impact of Metal-Based Nanoparticles on Cambisol Microbial Functionality, Enzyme Activity, and Plant Growth. Plants, 2021, 10, 2080.	1.6	13
61	Toxic Effects of Thallium on Biological Indicators of Haplic Chernozem Health: A Case Study. Environments - MDPl, 2021, 8, 119.	1.5	6
62	Economic Shock and Agri-Sector: Post-COVID-19 Scenario in India. Circular Economy and Sustainability, 2021, 1, 1-12.	3.3	1
63	Nano-Enabled Products: Challenges and Opportunities for Sustainable Agriculture. Plants, 2021, 10, 2727.	1.6	62
64	Ecotoxicological assessment of Zn, Cu and Ni based NPs contamination in Arenosols. Sains Tanah, 2021, 18, 143.	0.2	3
65	Realizing United Nations Sustainable Development Goals for Greener Remediation of Heavy Metals-Contaminated Soils by Biochar: Emerging Trends and Future Directions. Sustainability, 2021, 13, 13825.	1.6	15
66	Polycyclic Aromatic Hydrocarbons in Urban Soils Within the Different Land Use: A Case Study of Tyumen, Russia. Polycyclic Aromatic Compounds, 2020, 40, 1251-1265.	1.4	20
67	Anatomical and ultrastructural responses of Hordeum sativum to the soil spiked by copper. Environmental Geochemistry and Health, 2020, 42, 45-58.	1.8	41
68	The mechanisms of biochar interactions with microorganisms in soil. Environmental Geochemistry and Health, 2020, 42, 2495-2518.	1.8	125
69	Geochemical assessment and spatial analysis of heavy metals pollution around coal-fired power station. Environmental Geochemistry and Health, 2020, 42, 4087-4100.	1.8	33
70	Accumulation and transformation of benzo[a]pyrene in Haplic Chernozem under artificial contamination. Environmental Geochemistry and Health, 2020, 42, 2485-2494.	1.8	13
71	Chemical Soil-Biological Engineering Theoretical Foundations, Technical Means, and Technology for Safe Intrasoil Waste Recycling and Long-Term Higher Soil Productivity. ACS Omega, 2020, 5, 17553-17564.	1.6	38
72	Accumulation of nanoparticles in the soil-plant systems and their effects on human health. Annals of Agricultural Sciences, 2020, 65, 137-143.	1.1	129

#	Article	lF	CITATIONS
73	Comparative hydrochemical assessment of groundwater quality from different aquifers for irrigation purposes using IWQI: A case-study from Masis province in Armenia. Groundwater for Sustainable Development, 2020, 11, 100459.	2.3	30
74	Assessment of the combined effect of heavy metals and polyaromatic hydrocarbons on the cultural plants. E3S Web of Conferences, 2020, 175, 07006.	0.2	1
75	Impact of humic acid on degradation of benzo(a)pyrene polluted Haplic Chernozem triggered by modified Fenton-like process. Environmental Research, 2020, 190, 109948.	3.7	13
76	Comparison of Heavy Metal Content in <i>Artemisia austriaca</i> in Various Impact Zones. ACS Omega, 2020, 5, 23393-23400.	1.6	14
77	Zinc and cadmium accumulation in different parts of wild plants of the <i>Asteraceae</i> family and <i>Triticum aestivum</i> . E3S Web of Conferences, 2020, 169, 01003.	0.2	1
78	Assessment of health risks associated with soil contamination by heavy metal in an impact area of Novocherkassk power plant. IOP Conference Series: Earth and Environmental Science, 2020, 578, 012020.	0.2	0
79	Metodological aspects in the studying of soil particle size distribution under contamination and after reclamation. E3S Web of Conferences, 2020, 169, 01025.	0.2	1
80	Accumulating capacity of herbaceous plants of the Asteraceae and Poaceae families under technogenic soil pollution with zinc and cadmium. Eurasian Journal of Soil Science, 2020, 9, 165-172.	0.2	5
81	Assessment of extraction methods for studying the fractional composition of Cu and Zn in uncontaminated and contaminated soils. Eurasian Journal of Soil Science, 2020, 9, 231-241.	0.2	5
82	Mechanisms of copper immobilization in Fluvisol after the carbon sorbent applying. Eurasian Journal of Soil Science, 2020, 9, 356-361.	0.2	2
83	Ecological evaluation of polymetallic soil quality: the applicability of culture-dependent methods of bacterial communities studying. Journal of Soils and Sediments, 2019, 19, 3127-3138.	1.5	14
84	Interaction of Copper-Based Nanoparticles to Soil, Terrestrial, and Aquatic Systems: Critical Review of the Science and Future Perspectives. Reviews of Environmental Contamination and Toxicology, 2019, 252, 51-96.	0.7	33
85	PAHs distribution and cultivable PAHs degraders' biodiversity in soils and surface sediments of the impact zone of theÂNovocherkassk thermal electric power plant (Russia). Environmental Earth Sciences, 2019, 78, 1.	1.3	5
86	Possibilities of chemical fractionation and X-ray spectral analysis in estimating the speciation of Cu2+ with soil solid-phase components. Applied Geochemistry, 2019, 102, 55-63.	1.4	15
87	Study of copper, lead, and zinc speciation in the Haplic Chernozem surrounding coal-fired power plant. Applied Geochemistry, 2019, 104, 102-108.	1.4	18
88	The role of biochar-microbe interaction in alleviating heavy metal toxicity in Hordeum vulgare L. grown in highly polluted soils. Applied Geochemistry, 2019, 104, 93-101.	1.4	34
89	Molecular characterization of Zn in Technosols using X-ray absorption spectroscopy. Applied Geochemistry, 2019, 104, 168-175.	1.4	12
90	Quantitative speciation of Zn in technosols using chemical fractionation and X-ray absorption spectroscopy. Geochemistry: Exploration, Environment, Analysis, 2019, 19, 101-109.	0.5	2

Saglara S Mandzhieva

#	Article	IF	CITATIONS
91	Stabilization dynamics of easily and poorly soluble Zn compounds in the soil. Geochemistry: Exploration, Environment, Analysis, 2019, 19, 184-192.	0.5	6
92	Copper and zinc adsorption by Chernozems of different textures. IOP Conference Series: Earth and Environmental Science, 2019, 368, 012007.	0.2	1
93	Copper phytoextraction and phytostabilization potential of wild plant species growing in the mine polluted areas of Armenia. Geochemistry: Exploration, Environment, Analysis, 2019, 19, 155-163.	0.5	15
94	Impact of soil organic matter on calcium carbonate equilibrium and forms of Pb in water extracts from Kastanozem complex. Journal of Soils and Sediments, 2019, 19, 2717-2728.	1.5	18
95	The effect of humic substances on Cu migration in the soil profile. Chemistry and Ecology, 2019, 35, 86-101.	0.6	9
96	Synchrotron X-Ray Absorption Spectroscopy Applications to Speciation of Metals in Soil. Advances in Science, Technology and Innovation, 2019, , 17-19.	0.2	0
97	Phytoaccumulation of Benzo[a]pyrene by the Barley in Artificially Contaminated Soil. Polycyclic Aromatic Compounds, 2019, 39, 395-403.	1.4	13
98	Structural and Ultrastructural Changes in Nanoparticle Exposed Plants. , 2019, , 281-295.		11
99	Chemical partitioning of Zn in soil: application of two sequential extraction procedures. Geochemistry: Exploration, Environment, Analysis, 2019, 19, 93-100.	0.5	5
100	₽₹₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	¢Ð⊖.ЧÐ∙	ÐÐЎЗЕТ
101	Method of determining loosely bound compounds of heavy metals in the soil. MethodsX, 2018, 5, 217-226.	0.7	48
102	Determining the speciation of Zn in soils around the sediment ponds of chemical plants by XRD and XAFS spectroscopy and sequential extraction. Science of the Total Environment, 2018, 634, 1165-1173.	3.9	27
103	The effect of technogenic emissions on the heavy metals accumulation by herbaceous plants. Environmental Monitoring and Assessment, 2018, 190, 124.	1.3	20
104	Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: A review. Environmental Nanotechnology, Monitoring and Management, 2018, 9, 76-84.	1.7	178
105	Morphological and anatomical changes of Phragmites australis Cav. due to the uptake and accumulation of heavy metals from polluted soils. Science of the Total Environment, 2018, 636, 392-401.	3.9	51
106	Time effect on the stabilization of technogenic copper compounds in solid phases of Haplic Chernozem. Science of the Total Environment, 2018, 626, 1100-1107.	3.9	13
107	Accumulation and distribution features of micro- and macroelements in luvisols of plain and mountainous regions. Journal of Geochemical Exploration, 2018, 184, 394-399.	1.5	1
108	Comparing two methods of sequential fractionation in the study of copper compounds in Haplic chernozem under model experimental conditions. Journal of Soils and Sediments, 2018, 18, 2379-2386.	1.5	7

#	Article	IF	CITATIONS
109	Chemical contamination in upper horizon of Haplic Chernozem as a transformation factor of its physicochemical properties. Journal of Soils and Sediments, 2018, 18, 2418-2430.	1.5	11
110	Features of accumulation, migration, and transformation of benzo[a]pyrene in soil-plant system in a model condition of soil contamination. Journal of Soils and Sediments, 2018, 18, 2361-2367.	1.5	9
111	Forms of Cu (II), Zn (II), and Pb (II) compounds in technogenically transformed soils adjacent to the Karabashmed copper smelter. Journal of Soils and Sediments, 2018, 18, 2217-2228.	1.5	26
112	Effect of nanoparticles on crops and soil microbial communities. Journal of Soils and Sediments, 2018, 18, 2179-2187.	1.5	142
113	Effects of Copper Nanoparticles (CuO NPs) on Crop Plants: a Mini Review. BioNanoScience, 2018, 8, 36-42.	1.5	119
114	Influence of PAH contamination on soil ecological status. Journal of Soils and Sediments, 2018, 18, 2368-2378.	1.5	31
115	Ecological–Geochemical Studies of Technogenic Soils in the Flood Plain Landscapes of the Seversky Donets, Lower Don Basin. Geochemistry International, 2018, 56, 992-1002.	0.2	13
116	Accumulation of Heavy Metals by Forb Steppe Vegetation According to Long-Term Monitoring Data. Arid Ecosystems, 2018, 8, 190-202.	0.2	12
117	Method for hydrophytic plant sample preparation for light and electron microscopy (studies on) Tj ETQq1 1 0.784	4314 rgBT 0.7	/Qyerlock 1
118	Toxicity of copper oxide nanoparticles on spring barley (Hordeum sativum distichum). Science of the Total Environment, 2018, 645, 1103-1113.	3.9	129
119	Copper Adsorption by Chernozem Soils and Parent Rocks in Southern Russia. Geochemistry International, 2018, 56, 266-275.	0.2	18
120	Adsorption of copper by ordinary and southern chernozems from solutions of different salts. Journal of Geochemical Exploration, 2017, 176, 108-113.	1.5	10
121	Protective mechanism of the soil–plant system with respect to heavy metals. Journal of Soils and Sediments, 2017, 17, 1291-1300.	1.5	9
122	Assessing the effect of heavy metals from the Novocherkassk power station emissions on the biological activity of soils in the adjacent areas. Journal of Geochemical Exploration, 2017, 174, 70-78.	1.5	50
123	Sorption of Cu by chernozems in southern Russia. Journal of Geochemical Exploration, 2017, 174, 107-112.	1.5	11
124	Content and distribution of heavy metals in herbaceous plants under the effect of industrial aerosol emissions. Journal of Geochemical Exploration, 2017, 174, 113-120.	1.5	11
125	Heavy metals in the soil–plant system of the Don River estuarine region and the Taganrog Bay coast. Journal of Soils and Sediments, 2017, 17, 1474-1491.	1.5	30
126	Dynamics of benzo[α]pyrene accumulation in soils under the influence of aerotechnogenic emissions. Eurasian Soil Science, 2017, 50, 95-105.	0.5	23

#	Article	IF	CITATIONS
127	Heavy metals in soils and plants of the don river estuary and the Taganrog Bay coast. Eurasian Soil Science, 2017, 50, 1033-1047.	0.5	17
128	Physiological and hydrological changes in Populus euphratica seedlings under salinity stress. Acta Ecologica Sinica, 2017, 37, 229-235.	0.9	10
129	Effect of aerotechnogenic emissions on the content of heavy metals in herbaceous plants of the Lower Don region. Eurasian Soil Science, 2017, 50, 746-755.	0.5	4
130	Monitoring of benzo[a]pyrene content in soils under the effect of long-term technogenic poluttion. Journal of Geochemical Exploration, 2017, 174, 100-106.	1.5	23
131	lons association in soil solution as the cause of lead mobility and availability after application of phosphogypsum to chernozem. Journal of Geochemical Exploration, 2017, 182, 185-192.	1.5	12
132	Current State of Haplic Chernozems in Specially Protected Natural Areas of the Steppe Zone. OnLine Journal of Biological Sciences, 2017, 17, 363-371.	0.2	5
133	Effect of Heavy Metals on the Enzymatic Activity of Haplic Chernozem under Model Experimental Conditions. OnLine Journal of Biological Sciences, 2017, 17, 143-150.	0.2	2
134	Cadmium status in chernozem of the Krasnodar Krai (Russia) after the application of phosphogypsum. Proceedings of the Estonian Academy of Sciences, 2017, 66, 501.	0.9	6
135	Environmental Assessment of Soil Based on Fractional–Group Composition of Heavy Metals. , 2017, , 267-274.		0
136	Analysis of Benzo[a]Pyrene Contamination from an Long-Term Contaminated Soil. American Journal of Biochemistry and Biotechnology, 2016, 12, 1-11.	0.1	1
137	Thermodynamic Model of Calcium Carbonate System of Soil Solution. American Journal of Agricultural and Biological Science, 2016, 11, 82-92.	0.9	0
138	lon association in water solution of soil and vadose zone of chestnut saline solonetz as a driver of terrestrial carbon sink. Solid Earth, 2016, 7, 415-423.	1.2	20
139	A review on salinity adaptation mechanism and characteristics of Populus euphratica, a boon for arid ecosystems. Acta Ecologica Sinica, 2016, 36, 497-503.	0.9	23
140	Specific Features of Content and Mobility of Heavy Metals in Soils of Floodplain of the Don River. Arid Ecosystems, 2016, 6, 70-79.	0.2	10
141	extractive fractionation. Geochemistry International, 2016, 54, 197-204.	0.2	29
142	Plant contamination by heavy metals in the impact zone of Novocherkassk Power Station in the south of Russia. Journal of Soils and Sediments, 2016, 16, 1383-1391.	1.5	13
143	New alternative method of benzo[a]pyrene extractionfrom soils and its approbation in soil under technogenic pressure. Journal of Soils and Sediments, 2016, 16, 1323-1329.	1.5	26
144	Benzo[a]pyrene contamination in Rostov Region of Russian Federation: A 10-year retrospective of soil monitoring under the effect of long-term technogenic pollution. Eurasian Journal of Soil Science, 2016, 5, 155.	0.2	5

#	Article	IF	CITATIONS
145	Specific Features of the Accumulation and Distribution of Heavy Metals in Soils of the Floodplain and Deltaic Landscapes of the Don River. American Journal of Applied Sciences, 2015, 12, 885-895.	0.1	2
146	Desorption of Exchangeable Cations at Adsorption of Lead lons by Chernozem in the Presence of Attendant Anions. American Journal of Environmental Sciences, 2015, 11, 325-332.	0.3	0
147	Features of Microelement Composition of Ordinary Chernozems of the Azov and Lower Don Regions. American Journal of Agricultural and Biological Science, 2015, 10, 111-115.	0.9	4
148	Approbation of express-method for benzo[a]pyrene extraction from soils in the technogenic emission zone territories. Eurasian Journal of Soil Science, 2015, 4, 15.	0.2	10
149	TRANSFORMATION OF TECHNOGENIC Cu AND Zn COMPOUNDS IN CHERNOZEM. Environmental Engineering and Management Journal, 2015, 14, 481-486.	0.2	12
150	Solubility of Benzo[a]pyrene and Organic Matter of Soil in Subcritical Water. Croatica Chemica Acta, 2015, 88, 247-253.	0.1	5
151	THE GROUP COMPOSITION OF METAL COMPOUNDS IN SOIL AS AN INDEX OF SOIL ECOLOGICAL STATE. American Journal of Agricultural and Biological Science, 2014, 9, 19-24.	0.9	13
152	ACCUMULATION OF RADIONUCLIDES BY PYLAISIELLA MOSS (<i>PYLAISIA POLYANTHA</i>) UNDER URBOECOSYSTEM CONDITIONS. American Journal of Applied Sciences, 2014, 11, 1735-1742.	0.1	2
153	New method for benzo[a]pyrene analysis in plant material using subcritical water extraction. Journal of Geochemical Exploration, 2014, 144, 267-272.	1.5	22
154	Effect of attendant anions on zinc adsorption and transformation in chernozem. Journal of Geochemical Exploration, 2014, 144, 226-229.	1.5	15
155	Adsorption features of Cu(II), Pb(II), and Zn(II) by an ordinary chernozem from nitrate, chloride, acetate, and sulfate solutions. Eurasian Soil Science, 2014, 47, 10-17.	0.5	29
156	Soil contamination with heavy metals as a potential and real risk to the environment. Journal of Geochemical Exploration, 2014, 144, 241-246.	1.5	63
157	Effect of an attendant anion on the balance of cations in the soil-solution system with an ordinary chernozem as an example. Eurasian Soil Science, 2014, 47, 772-780.	0.5	12
158	Fractional and group composition of zinc and lead compounds as an indicator of the environmental status of soils. Eurasian Soil Science, 2014, 47, 511-518.	0.5	20
159	Steppe Zone Vegetation and Soil Layer Pollution by Heavy Metals Under the Influence Novocherkassk Power Station Emission. Biogeosystem Technique, 2014, 1, 50-57.	0.5	4
160	The role of soil's particle-size fractions in the adsorption of heavy metals. Eurasian Journal of Soil Science, 2014, 3, 197.	0.2	18
161	Heavy metal compounds in a soil of technogenic zone as indicate of its ecological state. Eurasian Journal of Soil Science, 2014, 3, 144.	0.2	6
162	ACCUMULATION AND DISTRIBUTION OF HEAVY METALS IN PLANTS WITHIN THE TECHNOGENESIS ZONE. Environmental Engineering and Management Journal, 2014, 13, 1307-1315.	0.2	14

#	Article	IF	CITATIONS
163	Fractional and group composition of the Mn, Cr, Ni, and Cd compounds in the soils of technogenic landscapes in the impact zone of the Novocherkassk Power Station. Eurasian Soil Science, 2013, 46, 375-385.	0.5	41
164	Ecological resistance of the soil–plant system to contamination by heavy metals. Journal of Geochemical Exploration, 2012, 123, 33-40.	1.5	45
165	Effect of the particle-size distribution on the adsorption of copper, lead, and zinc by Chernozemic soils of Rostov oblast. Eurasian Soil Science, 2011, 44, 1193-1200.	0.5	25
166	Group composition of heavy metal compounds in the soils contaminated by emissions from the Novocherkassk power station. Eurasian Soil Science, 2009, 42, 1533-1542.	0.5	14
167	Forms of heavy metal compounds in soils of the steppe zone. Eurasian Soil Science, 2008, 41, 708-716.	0.5	47
168	Combined approach for fractioning metal compounds in soils. Eurasian Soil Science, 2008, 41, 1171-1179.	0.5	27