Rosa Visone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4785902/publications.pdf

Version: 2024-02-01

		126907	161849
57	14,209	33	54
papers	citations	h-index	g-index
60	60	60	17101
63	63	63	17101
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A microRNA expression signature of human solid tumors defines cancer gene targets. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2257-2261.	7.1	5,220
2	A MicroRNA Signature Associated with Prognosis and Progression in Chronic Lymphocytic Leukemia. New England Journal of Medicine, 2005, 353, 1793-1801.	27.0	2,255
3	MicroRNA Signatures in Human Ovarian Cancer. Cancer Research, 2007, 67, 8699-8707.	0.9	1,356
4	E2F1-Regulated MicroRNAs Impair TGF \hat{l}^2 -Dependent Cell-Cycle Arrest and Apoptosis in Gastric Cancer. Cancer Cell, 2008, 13, 272-286.	16.8	818
5	MicroRNA deregulation in human thyroid papillary carcinomas. Endocrine-Related Cancer, 2006, 13, 497-508.	3.1	463
6	MiRNAs and Cancer. American Journal of Pathology, 2009, 174, 1131-1138.	3.8	387
7	MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, regulate p27Kip1 protein levels and cell cycle. Endocrine-Related Cancer, 2007, 14, 791-798.	3.1	383
8	Specific microRNAs are downregulated in human thyroid anaplastic carcinomas. Oncogene, 2007, 26, 7590-7595.	5.9	373
9	Reprogramming of miRNA networks in cancer and leukemia. Genome Research, 2010, 20, 589-599.	5.5	331
10	Oncogenic Role of <i>miR-483-3p</i> at the <i>IGF2/483</i> Locus. Cancer Research, 2010, 70, 3140-3149.	0.9	272
11	HMGA2 induces pituitary tumorigenesis by enhancing E2F1 activity. Cancer Cell, 2006, 9, 459-471.	16.8	226
12	Overexpression of the HMGA2 gene in transgenic mice leads to the onset of pituitary adenomas. Oncogene, 2002, 21, 3190-3198.	5.9	201
13	miR-130a targets MET and induces TRAIL-sensitivity in NSCLC by downregulating miR-221 and 222. Oncogene, 2012, 31, 634-642.	5.9	181
14	Karyotype-specific microRNA signature in chronic lymphocytic leukemia. Blood, 2009, 114, 3872-3879.	1.4	179
15	Transgenic mice overexpressing the wild-type form of the HMGA1 gene develop mixed growth hormone/prolactin cell pituitary adenomas and natural killer cell lymphomas. Oncogene, 2005, 24, 3427-3435.	5.9	137
16	Epigenetics and MicroRNAs in Cancer. International Journal of Molecular Sciences, 2018, 19, 459.	4.1	135
17	miR-181b is a biomarker of disease progression in chronic lymphocytic leukemia. Blood, 2011, 118, 3072-3079.	1.4	115
18	HMGA Proteins Up-regulate <i>CCNB2</i> Gene in Mouse and Human Pituitary Adenomas. Cancer Research, 2009, 69, 1844-1850.	0.9	107

#	Article	IF	CITATIONS
19	Haploinsufficiency of the Hmga1 Gene Causes Cardiac Hypertrophy and Myelo-Lymphoproliferative Disorders in Mice. Cancer Research, 2006, 66, 2536-2543.	0.9	104
20	Deregulation of microRNA expression in follicular cell-derived human thyroid carcinomas. Endocrine-Related Cancer, 2010, 17, F91-F104.	3.1	90
21	Wnt signalling modulates transcribed-ultraconserved regions in hepatobiliary cancers. Gut, 2017, 66, 1268-1277.	12.1	75
22	Micro-RNAs in Gastrointestinal and Liver Disease. Gastroenterology, 2008, 135, 1866-1869.	1.3	48
23	Mutated \hat{I}^2 -catenin evades a microRNA-dependent regulatory loop. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4840-4845.	7.1	48
24	MiR-181b: new perspective to evaluate disease progression in chronic lymphocytic leukemia. Oncotarget, 2012, 3, 195-202.	1.8	46
25	Over-expression of the $\langle i \rangle$ miR-483-3p $\langle j \rangle$ overcomes the miR-145/TP53 pro-apoptotic loop in hepatocellular carcinoma. Oncotarget, 2016, 7, 31361-31371.	1.8	45
26	Regulation of microRNA expression by HMGA1 proteins. Oncogene, 2009, 28, 1432-1442.	5.9	44
27	Critical Role of the HMGA2 Gene in Pituitary Adenomas. Cell Cycle, 2006, 5, 2045-2048.	2.6	40
28	SOM230, A New Somatostatin Analogue, Is Highly Effective in the Therapy of Growth Hormone/Prolactin-Secreting Pituitary Adenomas. Clinical Cancer Research, 2007, 13, 2738-2744.	7.0	39
29	Identification of microRNA activity by Targets' Reverse EXpression. Bioinformatics, 2010, 26, 91-97.	4.1	39
30	UCbase & Description of the Contract of the Co	14.5	38
31	Regulation of miR-483-3p by the O-linked N-acetylglucosamine transferase links chemosensitivity to glucose metabolism in liver cancer cells. Oncogenesis, 2017, 6, e328-e328.	4.9	36
32	A novel miR-371a-5p-mediated pathway, leading to BAG3 upregulation in cardiomyocytes in response to epinephrine, is lost in Takotsubo cardiomyopathy. Cell Death and Disease, 2015, 6, e1948-e1948.	6.3	35
33	The Glucose-Regulated MiR-483-3p Influences Key Signaling Pathways in Cancer. Cancers, 2018, 10, 181.	3.7	35
34	DNA methylation of shelf, shore and open sea CpG positions distinguish high microsatellite instability from low or stable microsatellite status colon cancer stem cells. Epigenomics, 2019, 11, 587-604.	2.1	29
35	A truncated HMGA1 gene induces proliferation of the 3T3-L1 pre-adipocytic cells: a model of human lipomas. Carcinogenesis, 2003, 24, 1861-1869.	2.8	28
36	Integrative genetic, epigenetic and pathological analysis of paraganglioma reveals complex dysregulation of NOTCH signaling. Acta Neuropathologica, 2013, 126, 575-594.	7.7	27

#	Article	IF	Citations
37	Allele-specific loss and transcription of the miR-15a/16-1 cluster in chronic lymphocytic leukemia. Leukemia, 2015, 29, 86-95.	7.2	27
38	MicroRNAs in Autoimmunity and Hematological Malignancies. International Journal of Molecular Sciences, 2018, 19, 3139.	4.1	26
39	E2F1 activation is responsible for pituitary adenomas induced by HMGA2 gene overexpression. Cell Division, 2006, 1, 17.	2.4	23
40	Targeted Disruption of the Murine Homeodomain-Interacting Protein Kinase-2 Causes Growth Deficiency In Vivo and Cell Cycle Arrest In Vitro. DNA and Cell Biology, 2009, 28, 161-167.	1.9	20
41	Paragangliomas arise through an autonomous vasculo-angio-neurogenic program inhibited by imatinib. Acta Neuropathologica, 2018, 135, 779-798.	7.7	20
42	High-mobility-group A1 (HMGA1) proteins down-regulate the expression of the recombination activating gene 2 (RAG2). Biochemical Journal, 2005, 389, 91-97.	3.7	12
43	B-RAF mutations are a rare event in pituitary adenomas. Journal of Endocrinological Investigation, 2007, 30, RC1-RC3.	3.3	12
44	<i>Hsa-miR-155-5p</i> drives aneuploidy at early stages of cellular transformation. Oncotarget, 2018, 9, 13036-13047.	1.8	12
45	The Mia/Cd-rap gene expression is downregulated by the high-mobility group A proteins in mouse pituitary adenomas. Endocrine-Related Cancer, 2007, 14, 875-886.	3.1	11
46	HNRNPL Restrains miR-155 Targeting of BUB1 to Stabilize Aberrant Karyotypes of Transformed Cells in Chronic Lymphocytic Leukemia. Cancers, 2019, 11, 575.	3.7	11
47	A Developmental Perspective on Paragangliar Tumorigenesis. Cancers, 2019, 11, 273.	3.7	11
48	Enhanced Expression of miR-181b in B Cells of CLL Improves the Anti-Tumor Cytotoxic T Cell Response. Cancers, 2021, 13, 257.	3.7	10
49	Hmga1 null mice are less susceptible to chemically induced skin carcinogenesis. European Journal of Cancer, 2008, 44, 318-325.	2.8	7
50	A perspective analysis: microRNAs, glucose metabolism, and drug resistance in colon cancer stem cells. Cancer Gene Therapy, 2021, , .	4.6	6
51	Tagging enhances histochemical and biochemical detection of Ran Binding Protein 9 in vivo and reveals its interaction with Nucleolin. Scientific Reports, 2020, 10, 7138.	3.3	4
52	RANBP9 as potential therapeutic target in non-small cell lung cancer. Journal of Cancer Metastasis and Treatment, 2020, 2020, .	0.8	1
53	Correction: Online Publication Dates for <i>Cancer Research</i> April 15, 2010 Articles. Cancer Research, 2010, 70, 4785-4786.	0.9	0
54	Allele-Specific Loss Of The Mir-15a/16-1 Cluster Correlates With ZAP70 Expression In CLL Patients With 13q Deletion. Blood, 2013, 122, 3753-3753.	1.4	0

#	Article	IF	CITATIONS
55	MiR-181b in Chronic Lymphocytic Leukemia B Cells Is Regulated By Cellular Interaction with CD4+ T Cells and Increases the CTL Toxicity Versus the Leukemic Clone. Blood, 2015, 126, 4134-4134.	1.4	O
56	Impact of BCR Stimulation on Mir-181b in Chronic Lymphocityc Leukemia. Blood, 2016, 128, 2026-2026.	1.4	0
57	Pathophysiology roles and translational opportunities of miRNAs in CLL. , 2022, , 179-186.		O