
MarÃ-a V Navarro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4785834/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	From laboratory scale to pilot plant: Evaluation of the catalytic co-pyrolysis of grape seeds and polystyrene wastes with CaO. Catalysis Today, 2021, 379, 87-95.	2.2	22
2	CO2 gasification of char derived from waste tire pyrolysis: Kinetic models comparison. Fuel, 2020, 273, 117745.	3.4	34
3	Effect of oxidation-reduction cycles on steam-methane reforming kinetics over a nickel-based catalyst. International Journal of Hydrogen Energy, 2019, 44, 12617-12627.	3.8	18
4	Pyrolysis kinetics of biomass wastes using isoconversional methods and the distributed activation energy model. Bioresource Technology, 2019, 288, 121485.	4.8	125
5	Drop-in biofuels from the co-pyrolysis of grape seeds and polystyrene. Chemical Engineering Journal, 2019, 377, 120246.	6.6	57
6	Kinetic study for the co-pyrolysis of lignocellulosic biomass and plastics using the distributed activation energy model. Energy, 2018, 165, 731-742.	4.5	82
7	Catalytic co-pyrolysis of grape seeds and waste tyres for the production of drop-in biofuels. Energy Conversion and Management, 2018, 171, 1202-1212.	4.4	76
8	Validation of the H2 production stage via SER under relevant conditions for the Ca/Cu reforming process practical application. Chemical Engineering Journal, 2017, 324, 266-278.	6.6	28
9	Development of Synthetic Ca-based CO2 Sorbents for Sorption Enhanced Reforming Coupled to Ca/Cu Chemical Loop. Energy Procedia, 2017, 114, 230-241.	1.8	6
10	Catalyst evaluation for high-purity H2 production by sorption-enhanced steam-methane reforming coupled to a Ca/Cu process. Journal of Power Sources, 2017, 363, 117-125.	4.0	23
11	Bifunctional Cu/H-ZSM-5 zeolite with hierarchical porosity for hydrocarbon abatement under cold-start conditions. Applied Catalysis B: Environmental, 2014, 154-155, 161-170.	10.8	54
12	Optimizing the performance of catalytic traps for hydrocarbon abatement during the cold-start of a gasoline engine. Journal of Hazardous Materials, 2014, 279, 527-536.	6.5	23
13	Catalytic pyrolysis of wood biomass in an auger reactor using calcium-based catalysts. Bioresource Technology, 2014, 162, 250-258.	4.8	185
14	Co-pyrolysis of biomass with waste tyres: Upgrading of liquid bio-fuel. Fuel Processing Technology, 2014, 119, 263-271.	3.7	260
15	Abatement of hydrocarbons by acid ZSM-5 and BETA zeolites under cold-start conditions. Adsorption, 2013, 19, 357-365.	1.4	20
16	Waste tyre pyrolysis – A review. Renewable and Sustainable Energy Reviews, 2013, 23, 179-213.	8.2	623
17	CuH-ZSM-5 as Hydrocarbon Trap under Cold Start Conditions. Environmental Science & Technology, 2013, 47, 5851-5857.	4.6	29
18	Molecular simulation design of a multisite solid for the abatement of cold start emissions. Chemical Communications, 2012, 48, 6571.	2.2	15

MarÃa V Navarro

#	Article	IF	CITATIONS
19	Application of a particle model to pyrolysis. Comparison of different feedstock: Plastic, tyre, coal and biomass. Fuel Processing Technology, 2012, 103, 1-8.	3.7	32
20	Modelling the heat and mass transfers of propane onto a ZSM-5 zeolite. Separation and Purification Technology, 2012, 86, 127-136.	3.9	21
21	Valorisation of forestry waste by pyrolysis in an auger reactor. Waste Management, 2011, 31, 1339-1349.	3.7	96
22	Modelling the Breakthrough Curves Obtained from the Adsorption of Propene onto Microporous Inorganic Solids. Adsorption Science and Technology, 2010, 28, 761-775.	1.5	7
23	Screening of different zeolites and silicoaluminophosphates for the retention of propene under cold start conditions. Microporous and Mesoporous Materials, 2010, 130, 239-247.	2.2	53
24	Valorisation of waste tyre by pyrolysis in a moving bed reactor. Waste Management, 2010, 30, 1220-1224.	3.7	134
25	Waste tyre pyrolysis: Modelling of a moving bed reactor. Waste Management, 2010, 30, 2530-2536.	3.7	23
26	Experimental and simulated propene isotherms on porous solids. Applied Surface Science, 2010, 256, 5292-5297.	3.1	14
27	Application of the distributed activation energy model to biomass and biomass constituents devolatilization. AICHE Journal, 2009, 55, 2700-2715.	1.8	36
28	Comparison of receptor models for source apportionment of the PM10 in Zaragoza (Spain). Chemosphere, 2009, 76, 1120-1129.	4.2	141
29	Long-Range Atmospheric Transport and Local Pollution Sources on PAH Concentrations in a South European Urban Area. Fulfilling of the European Directive. Water, Air, and Soil Pollution, 2008, 190, 271-285.	1.1	43
30	Application of the distributed activation energy model to blends devolatilisation. Chemical Engineering Journal, 2008, 142, 87-94.	6.6	17
31	Waste Tire Pyrolysis: Comparison between Fixed Bed Reactor and Moving Bed Reactor. Industrial & Engineering Chemistry Research, 2008, 47, 4029-4033.	1.8	98
32	Some inferences on the mechanism of atmospheric gas/particle partitioning of polycyclic aromatic hydrocarbons (PAH) at Zaragoza (Spain). Chemosphere, 2008, 73, 1357-1365.	4.2	72
33	Thermochemistry and kinetics of acetonylperoxy radical isomerisation and decomposition: a quantum chemistry and CVT/SCT approach. Physical Chemistry Chemical Physics, 2008, 10, 7139.	1.3	19
34	Assessment of the development of the pore size distribution during carbon activation: a population balance approach. Studies in Surface Science and Catalysis, 2007, 160, 551-558.	1.5	4
35	Temperature Swing Adsorption of Polycyclic Aromatic Hydrocarbons on Activated Carbons. Industrial & Engineering Chemistry Research, 2007, 46, 8193-8198.	1.8	13
36	Enthalpies of Formation, Bond Dissociation Energies and Reaction Paths for the Decomposition of Model Biofuels: Ethyl Propanoate and Methyl Butanoateâ€. Journal of Physical Chemistry A, 2007, 111, 3727-3739.	1.1	145

MarÃa V Navarro

#	Article	IF	CITATIONS
37	Experimental and Modeling Study of C5H10O2Ethyl and Methyl Estersâ€. Journal of Physical Chemistry A, 2007, 111, 4001-4014.	1.1	157
38	Modeling of Activated Carbon Production from Lignite. Energy & amp; Fuels, 2006, 20, 2627-2631.	2.5	13
39	Thermochemistry of Acetonyl and Related Radicals. Journal of Physical Chemistry A, 2006, 110, 13618-13623.	1.1	52
40	Analysis of the evolution of the pore size distribution and the pore network connectivity of a porous carbon during activation. Carbon, 2006, 44, 2281-2288.	5.4	30
41	The application of thermal processes to valorise waste tyre. Fuel Processing Technology, 2006, 87, 143-147.	3.7	182
42	Response to the comment on "The application of thermal processes to valorise waste tyre―by J.C. Jones. Fuel Processing Technology, 2006, 87, 755.	3.7	1
43	Assessment of tire devolatilization kinetics. Journal of Analytical and Applied Pyrolysis, 2005, 74, 259-264.	2.6	66
44	Production and Application of Activated Carbons Made from Waste Tire. Industrial & Engineering Chemistry Research, 2005, 44, 7228-7233.	1.8	48
45	Levels of selected metals in ambient air PM10 in an urban site of Zaragoza (Spain). Environmental Research, 2005, 99, 58-67.	3.7	114
46	WHERE ARE THE LIMITS OF THE GAS-PHASE FLUORESCENCE ON THE POLYCYCLIC AROMATIC COMPOUND ANALYSIS?. Polycyclic Aromatic Compounds, 2004, 24, 325-332.	1.4	5
47	Activation of pyrolytic tire char with CO2: kinetic study. Journal of Analytical and Applied Pyrolysis, 2004, 71, 945-957.	2.6	57
48	Adsorption of phenanthrene on activated carbons: Breakthrough curve modeling. Carbon, 2004, 42, 2009-2017.	5.4	67
49	Development of Efficient Adsorbent Materials for PAH Cleaning from AFBC Hot Gas. Energy & Fuels, 2004, 18, 202-208.	2.5	17
50	Kinetic Model Comparison for Waste Tire Char Reaction with CO2. Industrial & Engineering Chemistry Research, 2004, 43, 7768-7773.	1.8	35
51	Spatial and temporal PAH concentrations in Zaragoza, Spain. Science of the Total Environment, 2003, 307, 111-124.	3.9	99
52	Critical review on atmospheric PAH. Assessment of reported data in the Mediterranean basin. Fuel Processing Technology, 2003, 80, 183-193.	3.7	47
53	Study of the Adsorption of Polyaromatic Hydrocarbon Binary Mixtures on Carbon Materials by Gas-Phase Fluorescence Detection. Energy & Fuels, 2003, 17, 669-676.	2.5	17
54	Measurements of Polycyclic Aromatic Hydrocarbon Adsorption on Activated Carbons at Very Low Concentrations. Industrial & Engineering Chemistry Research, 2003, 42, 155-161.	1.8	36

MarÃa V Navarro

#	Article	IF	CITATIONS
55	Limestone Influence on PAH Emissions from Coal AFBC. Catalytic or/and Adsorption Effect?. Studies in Surface Science and Catalysis, 2002, , 403-409.	1.5	0
56	Phenanthrene Asorption on a Carbonaceous Material: Moisture and CO2 Influence. Studies in Surface Science and Catalysis, 2002, 144, 283-290.	1.5	1
57	Moisture Effects on the Phenanthrene Adsorption Capacity by Carbonaceous Materials. Energy & Fuels, 2002, 16, 205-210.	2.5	26
58	Three-Ring PAH Removal from Waste Hot Gas by Sorbents:Â Influence of the Sorbent Characteristics. Environmental Science & Technology, 2002, 36, 1821-1826.	4.6	32
59	Effects of CO2 on the Phenanthrene Adsorption Capacity of Carbonaceous Materials. Energy & Fuels, 2002, 16, 510-516.	2.5	14
60	Study of the viability of the process for hydrogen recovery from old tyre oils. Fuel Processing Technology, 2002, 75, 185-199.	3.7	31
61	Sorbent characteristics influence on the adsorption of PAC: I. PAH adsorption with the same number of rings. Fuel Processing Technology, 2002, 77-78, 373-379.	3.7	31
62	Influence of sorbent characteristics on the adsorption of PAC. Fuel Processing Technology, 2002, 77-78, 365-372.	3.7	17
63	Removal of Naphthalene, Phenanthrene, and Pyrene by Sorbents from Hot Gas. Environmental Science & Technology, 2001, 35, 2395-2400.	4.6	61
64	Effects of Limestone on Polycyclic Aromatic Hydrocarbon Emissions during Coal Atmospheric Fluidized Bed Combustion. Energy & Fuels, 2001, 15, 1469-1474.	2.5	23
65	Aromatization of oils from coal–tyre cothermolysis. Fuel Processing Technology, 2000, 68, 45-55.	3.7	11
66	Improvement of liquids from coal–tire co-thermolysis. Characterization of the obtained oils. Fuel Processing Technology, 2000, 64, 135-140.	3.7	23