Adem Gharsallaoui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/478580/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Delineation of molecular structure modification during coagulation of mixed camel and cow milk by midâ€infrared spectroscopy and parallel factor analysis. Journal of Food Processing and Preservation, 2022, 46, e15839.	0.9	4
2	Polyelectrolytes-stabilized liposomes for efficient encapsulation of Lactobacillus rhamnosus and improvement of its survivability under adverse conditions. Food Chemistry, 2022, 372, 131358.	4.2	25
3	Hurdle technology using encapsulated enzymes and essential oils to fight bacterial biofilms. Applied Microbiology and Biotechnology, 2022, 106, 2311-2335.	1.7	11
4	Advancements in Biodegradable Active Films for Food Packaging: Effects of Nano/Microcapsule Incorporation. Foods, 2022, 11, 760.	1.9	41
5	Microencapsulation of Natural Food Antimicrobials: Methods and Applications. Applied Sciences (Switzerland), 2022, 12, 3837.	1.3	7
6	Effect of pectin on the properties of nanoemulsions stabilized by sodium caseinate at neutral pH. International Journal of Biological Macromolecules, 2022, 209, 1858-1866.	3.6	11
7	Formation of lysozyme-caseinate heteroprotein complexes for encapsulation of lysozyme by spray-drying: Effect of mass ratio and temperature. International Journal of Biological Macromolecules, 2022, 215, 312-320.	3.6	1
8	Microencapsulation of carvacrol as an efficient tool to fight Pseudomonas aeruginosa and Enterococcus faecalis biofilms. PLoS ONE, 2022, 17, e0270200.	1.1	13
9	Conditions of nisin production by Lactococcus lactis subsp. lactis and its main uses as a food preservative. Archives of Microbiology, 2021, 203, 465-480.	1.0	36
10	Rheological and emulsifying properties of an exopolysaccharide produced by potential probiotic Leuconostoc citreum-BMS strain. Carbohydrate Polymers, 2021, 256, 117523.	5.1	28
11	Anti-biofilm activity of dodecyltrimethylammonium chloride microcapsules against Salmonella enterica serovar Enteritidis and Staphylococcus aureus. Biofouling, 2021, 37, 49-60.	0.8	9
12	Preparation and Characterization of Microcapsules Containing Antioxidant Fish Protein Hydrolysates: a New Use of Bycatch in Brazil. Marine Biotechnology, 2021, 23, 321-330.	1.1	13
13	Nanocomposite sponges for enhancing intestinal residence time following oral administration. Journal of Controlled Release, 2021, 333, 579-592.	4.8	16
14	Effect of electrostatic interactions and complexes formation between nisin and bacterial exopolysaccharides on nisin antimicrobial efficacy. LWT - Food Science and Technology, 2021, 143, 111116.	2.5	3
15	Maillard reaction products formation and antioxidative power of spray dried camel milk powders increases with the inlet temperature of drying. LWT - Food Science and Technology, 2021, 143, 111091.	2.5	14
16	Nanoencapsulation of Essential Oils as Natural Food Antimicrobial Agents: An Overview. Applied Sciences (Switzerland), 2021, 11, 5778.	1.3	55
17	Effect of carrier oil on the properties of sodium caseinate stabilized O/W nanoemulsions containing Trans-cinnamaldehyde. LWT - Food Science and Technology, 2021, 146, 111655.	2.5	8

18 Conventional product formation. , 2021, , 155-170.

#	Article	IF	CITATIONS
19	Effect of emulsifier and droplet size on the antibacterial properties of emulsions and emulsionâ€based films containing essential oil compounds. Journal of Food Processing and Preservation, 2021, 45, e16072.	0.9	7
20	Food Applications of Nigella sativa Essential Oil. Food Bioactive Ingredients, 2021, , 433-455.	0.3	5
21	Water-Soluble Ruthenium (II) Complex Derived From Optically Pure Limonene and Its Microencapsulation Are Efficient Tools Against Bacterial Food Pathogen Biofilms: Escherichia coli, Staphylococcus aureus, Enteroccocus faecalis, and Listeria monocytogenes. Frontiers in Microbiology. 2021. 12. 711326.	1.5	7
22	Structural characterization and functional properties of novel exopolysaccharide from the extremely halotolerant Halomonas elongata S6. International Journal of Biological Macromolecules, 2020, 164, 95-104.	3.6	18
23	Physicochemical, rheological, and micro-structural properties of yogurts produced from mixtures of camel and bovine milks. NFS Journal, 2020, 19, 26-33.	1.9	32
24	Viability improvement of Bifidobacterium animalis Bb12 by encapsulation in chitosan/poly(vinyl) Tj ETQq0 0 0 rg	BT /Overlc	ock 10 Tf 50 5
25	Molecular epidemiology of nonpharyngeal group A streptococci isolates in northern Lebanon. Future Microbiology, 2020, 15, 1555-1569.	1.0	2
26	LABiocin database: A new database designed specifically for Lactic Acid Bacteria bacteriocins. International Journal of Antimicrobial Agents, 2019, 54, 771-779.	1.1	29
27	Potential biotechnological properties of an exopolysaccharide produced by newly isolated Bacillus tequilensis-GM from spontaneously fermented goat milk. LWT - Food Science and Technology, 2019, 105, 135-141.	2.5	26
28	Effect of drying and interfacial membrane composition on the antimicrobial activity of emulsified citral. Food Chemistry, 2019, 298, 125079.	4.2	17
29	Spray-drying of protein/polysaccharide complexes: Dissociation of the effects of shearing and heating. Food Chemistry, 2019, 297, 124943.	4.2	8
30	Spray-drying microencapsulation of nisin by complexation with exopolysaccharides produced by probiotic Bacillus tequilensis-GM and Leuconostoc citreum-BMS. Colloids and Surfaces B: Biointerfaces, 2019, 181, 25-30.	2.5	15
31	Antimicrobial films based on pectin and sodium caseinate for the release of antifungal natamycin. Journal of Food Processing and Preservation, 2019, 43, e13953.	0.9	14
32	Physicochemical and rheological changes of acidified camel milk added with commercial low methoxyl-pectin. International Journal of Biological Macromolecules, 2019, 128, 347-353.	3.6	12
33	Comparative study of growth temperature impact on the susceptibility of biofilm-detached and planktonic Staphylococcus aureus cells to benzalkonium chloride. Annals of Microbiology, 2019, 69, 291-298.	1.1	5
34	Low Methoxyl pectin / sodium caseinate complexing behavior studied by isothermal titration calorimetry. Food Hydrocolloids, 2019, 88, 163-169.	5.6	30
35	Study of interactions between anionic exopolysaccharides produced by newly isolated probiotic bacteria and sodium caseinate. Colloids and Surfaces B: Biointerfaces, 2018, 167, 516-523.	2.5	23
36	Peptides from Fish By-product Protein Hydrolysates and Its Functional Properties: an Overview. Marine Biotechnology, 2018, 20, 118-130.	1.1	161

#	Article	IF	CITATIONS
37	Gelatin films with nisin and catechin for minced pork preservation. Food Packaging and Shelf Life, 2018, 18, 173-183.	3.3	59
38	Influence of low methoxyl pectin on the physicochemical properties of sodium caseinateâ€stabilized emulsions. Journal of Food Process Engineering, 2018, 41, e12906.	1.5	8
39	Thermodynamic and physiochemical insights into chickpea protein-Persian gum interactions and environmental effects. International Journal of Biological Macromolecules, 2018, 119, 1052-1058.	3.6	29
40	Low methoxyl pectin/sodium caseinate interactions and composite film formation at neutral pH. Food Hydrocolloids, 2017, 69, 132-140.	5.6	38
41	Using complexation for the microencapsulation of nisin in biopolymer matrices by spray-drying. Food Chemistry, 2017, 236, 32-40.	4.2	39
42	pH-dependent complexation of lysozyme with low methoxyl (LM) pectin. Food Chemistry, 2017, 236, 127-133.	4.2	29
43	Using complex coacervation for lysozyme encapsulation by spray-drying. Journal of Food Engineering, 2016, 183, 50-57.	2.7	47
44	Properties of lysozyme/sodium alginate complexes for the development of antimicrobial films. Food Research International, 2016, 89, 272-280.	2.9	38
45	Complex coacervation for the development of composite edible films based on LM pectin and sodium caseinate. Carbohydrate Polymers, 2016, 151, 947-956.	5.1	73
46	Nisin as a Food Preservative: Part 1: Physicochemical Properties, Antimicrobial Activity, and Main Uses. Critical Reviews in Food Science and Nutrition, 2016, 56, 1262-1274.	5.4	289
47	Nisin as a Food Preservative: Part 2: Antimicrobial Polymer Materials Containing Nisin. Critical Reviews in Food Science and Nutrition, 2016, 56, 1275-1289.	5.4	63
48	Properties of lysozyme/Arthrospira platensis (Spirulina) protein complexes for antimicrobial edible food packaging. Algal Research, 2016, 15, 43-49.	2.4	25
49	Fatty acid composition in double and multilayered microcapsules of ω-3 as affected by storage conditions and type of emulsions. Food Chemistry, 2016, 194, 476-486.	4.2	42
50	Effect of pH on the functional properties of Arthrospira (Spirulina) platensis protein isolate. Food Chemistry, 2016, 194, 1056-1063.	4.2	180
51	Conventional product formation. , 2015, , 173-193.		1
52	Effect of a VietnameseCinnamomum cassiaessential oil and its major componenttrans-cinnamaldehyde on the cell viability, membrane integrity, membrane fluidity, and proton motive force ofListeria innocua. Canadian Journal of Microbiology, 2015, 61, 263-271.	0.8	42
53	Volatile compounds and physicochemical characteristics during storage of microcapsules from different fish oil emulsions. Food and Bioproducts Processing, 2015, 96, 52-64.	1.8	45
54	Effect of emulsification and spray-drying microencapsulation on the antilisterial activity of transcinnamaldehyde. Journal of Microencapsulation, 2015, 32, 719-723.	1.2	4

ADEM GHARSALLAOUI

#	Article	IF	CITATIONS
55	Effect of low methoxyl (LM) pectin complexation on the thermal and proteolytic inactivation of lysozyme: A kinetic study. Food Hydrocolloids, 2015, 43, 812-818.	5.6	12
56	Preservation of viability and anti-Listeria activity of lactic acid bacteria, Lactococcus lactis and Lactobacillus paracasei, entrapped in gelling matrices of alginate or alginate/caseinate. Food Control, 2015, 47, 7-19.	2.8	29
57	Suitability of Using Monolayered and Multilayered Emulsions for Microencapsulation of ω-3 Fatty Acids by Spray Drying: Effect of Storage at Different Temperatures. Food and Bioprocess Technology, 2015, 8, 100-111.	2.6	76
58	Properties of lysozyme/low methoxyl (LM) pectin complexes for antimicrobial edible food packaging. Journal of Food Engineering, 2014, 131, 18-25.	2.7	100
59	Design of biopolymeric matrices entrapping bioprotective lactic acid bacteria to control Listeria monocytogenes growth: Comparison of alginate and alginate-caseinate matrices entrapping Lactococcus lactis subsp. lactis cells. Food Control, 2014, 37, 200-209.	2.8	21
60	Preferential localization of Lactococcus lactis cells entrapped in a caseinate/alginate phase separated system. Colloids and Surfaces B: Biointerfaces, 2013, 109, 266-272.	2.5	23
61	Pea (Pisum sativum, L.) Protein Isolate Stabilized Emulsions: A Novel System for Microencapsulation of Lipophilic Ingredients by Spray Drying. Food and Bioprocess Technology, 2012, 5, 2211-2221.	2.6	107
62	Properties of spray-dried food flavours microencapsulated with two-layered membranes: Roles of interfacial interactions and water. Food Chemistry, 2012, 132, 1713-1720.	4.2	79
63	Study of batch maltitol (4-O-α-d-glucopyranosyl-d-glucitol) crystallization by cooling and water evaporation. Journal of Crystal Growth, 2010, 312, 3183-3190.	0.7	4
64	Effect of high methoxyl pectin on pea protein in aqueous solution and at oil/water interface. Carbohydrate Polymers, 2010, 80, 817-827.	5.1	82
65	Utilisation of pectin coating to enhance spray-dry stability of pea protein-stabilised oil-in-water emulsions. Food Chemistry, 2010, 122, 447-454.	4.2	87
66	Interfacial and Emulsifying Characteristics of Acid-treated Pea Protein. Food Biophysics, 2009, 4, 273-280.	1.4	81
67	Solid–Liquid Equilibrium of Maltitol Aqueous Solutions—Implications on the Crystallization Behavior and Process. Food Biophysics, 2008, 3, 16-24.	1.4	7
68	Water–disaccharides interactions in saturated solution and the crystallisation conditions. Food Chemistry, 2008, 106, 1329-1339.	4.2	27
69	Relationships between hydration number, water activity and density of aqueous sugar solutions. Food Chemistry, 2008, 106, 1443-1453.	4.2	55
70	Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International, 2007, 40, 1107-1121.	2.9	1,762
71	MOROCCAN TRADITIONAL FERMENTED DAIRY PRODUCTS: CURRENT PROCESSING PRACTICES AND PHYSICOCHEMICAL AND MICROBIOLOCICAL PROPERTIES - A REVIEW. Journal of Microbiology, Biotechnology and Food Sciences, 0, , e5636.	0.4	4