
Yin-Biao Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4785795/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cardiac myosin regulatory light chain kinase modulates cardiac contractility by phosphorylating both myosin regulatory light chain and troponin I. Journal of Biological Chemistry, 2020, 295, 4398-4410.	1.6	16
2	Site-specific phosphorylation of myosin binding protein-C coordinates thin and thick filament activation in cardiac muscle. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15485-15494.	3.3	48
3	15-deoxy-Δ12,14-Prostaglandin J2 inhibits human soluble epoxide hydrolase by a dual orthosteric and allosteric mechanism. Communications Biology, 2019, 2, 188.	2.0	16
4	Reversible Covalent Reaction of Levosimendan with Cardiac Troponin C <i>in Vitro</i> and <i>in Situ</i> . Biochemistry, 2018, 57, 2256-2265.	1.2	8
5	Omecamtiv mercabil and blebbistatin modulate cardiac contractility by perturbing the regulatory state of the myosin filament. Journal of Physiology, 2018, 596, 31-46.	1.3	83
6	Structural and functional effects of myosin-binding protein-C phosphorylation in heart muscle are not mimicked by serine-to-aspartate substitutions. Journal of Biological Chemistry, 2018, 293, 14270-14275.	1.6	19
7	Distinct contributions of the thin and thick filaments to length-dependent activation in heart muscle. ELife, 2017, 6, .	2.8	48
8	Myosin light chain phosphorylation enhances contraction of heart muscle via structural changes in both thick and thin filaments. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3039-47.	3.3	105
9	Reversible Covalent Binding to Cardiac Troponin C by the Ca ²⁺ -Sensitizer Levosimendan. Biochemistry, 2016, 55, 6032-6045.	1.2	14
10	Novel myosin-based therapies for congenital cardiac and skeletal myopathies. Journal of Medical Genetics, 2016, 53, 651-654.	1.5	11
11	Probing the mechanism of cardiovascular drugs using a covalent levosimendan analog. Journal of Molecular and Cellular Cardiology, 2016, 92, 174-184.	0.9	16
12	Orientation of the N- and C-Terminal Lobes of the Myosin Regulatory Light Chain in Cardiac Muscle. Biophysical Journal, 2015, 108, 304-314.	0.2	15
13	The structural and functional effects of the familial hypertrophic cardiomyopathy-linked cardiac troponin C mutation, L29Q. Journal of Molecular and Cellular Cardiology, 2015, 87, 257-269.	0.9	18
14	Structural dynamics of troponin during activation of skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4626-4631.	3.3	35
15	Myosin binding protein-C activates thin filaments and inhibits thick filaments in heart muscle cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18763-18768.	3.3	103
16	Regulatory domain of troponin moves dynamically during activation of cardiac muscle. Journal of Molecular and Cellular Cardiology, 2014, 75, 181-187.	0.9	22
17	Conformation of the Troponin Core Complex in the Thin Filaments of Skeletal Muscle during Relaxation and Active Contraction. Journal of Molecular Biology, 2012, 421, 125-137.	2.0	26
18	Orientation of the N-Terminal Lobe of the Myosin Regulatory Light Chain inÂSkeletal Muscle Fibers. Biophysical Journal, 2012, 102, 1418-1426.	0.2	8

YIN-BIAO SUN

#	Article	IF	CITATIONS
19	Uncoordinated Transcription and Compromised Muscle Function in the Lmna-Null Mouse Model of Emery-Dreifuss Muscular Dystrophy. PLoS ONE, 2011, 6, e16651.	1.1	37
20	Interference X-ray Diffraction from Single Muscle Cells Reveals the Molecular Basis of Muscle Braking. , 2011, , 183-189.		0
21	The molecular basis of the steep force–calcium relation in heart muscle. Journal of Molecular and Cellular Cardiology, 2010, 48, 859-865.	0.9	50
22	A structural and functional perspective into the mechanism of Ca2+-sensitizers that target the cardiac troponin complex. Journal of Molecular and Cellular Cardiology, 2010, 49, 1031-1041.	0.9	60
23	Calcium―and myosinâ€dependent changes in troponin structure during activation of heart muscle. Journal of Physiology, 2009, 587, 155-163.	1.3	89
24	Orientation of the Essential Light Chain Region of Myosin in Relaxed, Active, and Rigor Muscle. Biophysical Journal, 2008, 95, 3882-3891.	0.2	17
25	Tryptophan Mutants of Cardiac Troponin C:  3D Structure, Troponin I Affinity, and <i>in Situ</i> Activity [,] . Biochemistry, 2008, 47, 597-606.	1.2	2
26	Skeletal muscle resists stretch by rapid binding of the second motor domain of myosin to actin. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20114-20119.	3.3	95
27	Toward Protein Structure In Situ: Comparison of Two Bifunctional Rhodamine Adducts of Troponin C. Biophysical Journal, 2007, 93, 1008-1020.	0.2	10
28	Structural changes in troponin in response to Ca2+ and myosin binding to thin filaments during activation of skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17771-17776.	3.3	40
29	Structure-Function Relation of the Myosin Motor in Striated Muscle. Annals of the New York Academy of Sciences, 2005, 1047, 232-247.	1.8	22
30	X-ray diffraction studies of the contractile mechanism in single muscle fibres. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 1883-1893.	1.8	33
31	The myosin motor in muscle generates a smaller and slower working stroke at higher load. Nature, 2004, 428, 578-581.	13.7	183
32	Actomyosin energy turnover declines while force remains constant during isometric muscle contraction. Journal of Physiology, 2004, 555, 27-43.	1.3	28
33	In Situ Orientations of Protein Domains. Molecular Cell, 2003, 11, 865-874.	4.5	51
34	Mechanism of force generation by myosin heads in skeletal muscle. Nature, 2002, 415, 659-662.	13.7	133
35	Conformation of the myosin motor during force generation in skeletal muscle. Nature Structural Biology, 2000, 7, 482-485.	9.7	98
36	The highâ€force region of the forceâ€velocity relation in frog skinned muscle fibres. Acta Physiologica Scandinavica, 1993, 148, 243-252.	2.3	9