Xiao Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4785708/publications.pdf Version: 2024-02-01

Χιλο ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	A Single-Layer Dual-Band Dual-Sense Circularly Polarized Patch Antenna Array With Small Frequency Ratio. IEEE Transactions on Antennas and Propagation, 2022, 70, 2668-2675.	5.1	6
2	Analysis and Design of Stable-Performance Circularly-Polarized Antennas Based on Coupled Radiators for Smart Watches. IEEE Transactions on Antennas and Propagation, 2022, 70, 5312-5323.	5.1	11
3	Principle and Unified Design of Circularly Polarized Quadruple Inverted-F Antenna With Miniaturized Size and Enhanced Front-to-Back Ratio. IEEE Transactions on Antennas and Propagation, 2022, 70, 7735-7744.	5.1	9
4	Linearly and circularly polarized filtering patch antennas with enhanced gain selectivity on a singleâ€layer substrate. International Journal of RF and Microwave Computer-Aided Engineering, 2022, 32, .	1.2	1
5	Sheared <i>E</i> × <i>B</i> flow encountered in space plasma excited from two controllable methods. , 2022, 52, 4.		1
6	Wideband Differentially Fed Patch Antennas Under Dual High-Order Modes for Stable High Gain. IEEE Transactions on Antennas and Propagation, 2021, 69, 508-513.	5.1	31
7	A Travelling-Wave-Fed Slot Spiral Antenna With Wide Axial-Ratio Bandwidth and Beamwidth for GNSS Applications. IEEE Open Journal of Antennas and Propagation, 2021, 2, 578-584.	3.7	3
8	A High-Gain and Pattern-Reconfigurable Patch Antenna Under Operation of TMâ,,â,€ and TMâ,,â,•Modes. IEEE Open Journal of Antennas and Propagation, 2021, 2, 646-653.	3.7	9
9	Laboratory plasma devices for space physics investigation. Review of Scientific Instruments, 2021, 92, 071101.	1.3	14
10	Differentially-Fed Rectangular Patch Antenna under TM21 and TM03 Modes for Enhanced Bandwidth and Stable High Gain. , 2021, , .		0
11	Design of Equal-Ripple Dual-Wideband Bandpass Filter With Minimum Design Parameters Based on Cross-Shaped Resonator. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 1780-1784.	3.0	11
12	Compact dualâ€band printed quadrifilar helix antenna for practical handâ€held devices. International Journal of RF and Microwave Computer-Aided Engineering, 2020, 30, e22384.	1.2	5
13	Ion current collection by double flush-mounted probe in intermediate-pressure plasmas. AIP Advances, 2020, 10, .	1.3	1
14	The unstable ELM evolution modulated by lower hybrid waves on EAST. Plasma Physics and Controlled Fusion, 2020, 62, 095007.	2.1	6
15	A Self-Balanced Wideband Patch Antenna Fed With a U-Resonator for Stable Radiation Performance. IEEE Antennas and Wireless Propagation Letters, 2020, 19, 661-665.	4.0	6
16	Design of Notched-Wideband Bandpass Filters With Reconfigurable Bandwidth Based on Terminated Cross-Shaped Resonators. IEEE Access, 2020, 8, 37416-37427.	4.2	14
17	A 3-D Printed Spherical Antenna With Bandwidth Enhancement Under Operation of Dual Resonance. IEEE Access, 2020, 8, 19345-19352.	4.2	8
18	Synthesis Design of Chebyshev Wideband Band-Pass Filters With Independently Reconfigurable Lower Passband Edge. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 2948-2952.	3.0	9

XIAO ZHANG

#	Article	IF	CITATIONS
19	The factors determining the evolution of edge-localized modes in plasmas driven by lower hybrid currents. Plasma Physics and Controlled Fusion, 2020, 62, 125013.	2.1	4
20	EMI Radiation Suppression of Cables and Connectors for 5G Mobile Devices. , 2020, , .		2
21	Differentially-Fed Circular Patch Antenna under Dual High-order Modes for Enhanced Bandwidth and Stable High Gain. , 2020, , .		1
22	Wideband Circularly Polarized Patch Antennas via Co-design of Feeding Networks. , 2020, , .		0
23	A Simple and Planar Notched-Wideband Bandpass Filter with Multipole Poles and Zeros. , 2020, , .		0
24	A Compact Dual-Band Circularly Polarized Antenna With Wide Axial-Ratio Beamwidth for Vehicle GPS Satellite Navigation Application. IEEE Transactions on Vehicular Technology, 2019, 68, 8683-8692.	6.3	59
25	Slot Loading Effect on the Impedance and Radiation Performance of the TM03-Mode High-Gain Square Patch Antenna. , 2019, , .		2
26	Design and fabrication of a resonant-cavity electrode microwave discharge device and its performance in argon and xenon plasma. Review of Scientific Instruments, 2019, 90, .	1.3	2
27	Design of Wideband and High-Gain Slotline Antenna Using Multi-Mode Radiator. IEEE Access, 2019, 7, 54252-54260.	4.2	18
28	Compact Microstrip NWB/DWB BPFs With Controllable Isolation Bandwidth for Interference Rejection. IEEE Access, 2019, 7, 49169-49176.	4.2	11
29	An Improved Method for Extracting the Coupling Coefficient of Filtering Antennas within Complex Boundaries. , 2019, , .		0
30	A Differential-Fed Rectangular Microstrip Patch Antenna with Dual-Band High Gain under Operation of TM01 and TM03 Modes. , 2019, , .		0
31	Low-Profile Patch Antennas with Loading of Shorting Pins for Improved Functionalities: Invited Paper. , 2019, , .		2
32	A Quarter-Wavelength Wideband Bandpass Filter with Two notch Bands. , 2019, , .		0
33	Pressure dependence of an ion beam accelerating structure in an expanding helicon plasma. Physics of Plasmas, 2018, 25, .	1.9	17
34	The influence of gas pressure on E↔H mode transition in argon inductively coupled plasmas. AIP Advances, 2018, 8, .	1.3	9
35	Comparisons of the Characteristic on the Mode Transition in an Inductively Coupled Discharge by Exciting Coil Change. IEEE Transactions on Plasma Science, 2017, 45, 338-345.	1.3	5
36	Laboratory generation of broadband ELF waves by inhomogeneous plasma flow. Geophysical Research Letters, 2017, 44, 1634-1640.	4.0	16

XIAO ZHANG

#	Article	IF	CITATIONS
37	Double flush-mounted probe diagnostics and data analysis technique for argon glow discharge plasma. Review of Scientific Instruments, 2017, 88, 013502.	1.3	4
38	Laboratory simulation of the formation of an ionospheric depletion using Keda Space Plasma EXperiment (KSPEX). AIP Advances, 2017, 7, .	1.3	5
39	Laboratory experiments in the argon plasma perturbed by injections of the electronegative gases. AIP Advances, 2016, 6, 075304.	1.3	6
40	Design and construction of Keda Space Plasma Experiment (KSPEX) for the investigation of the boundary layer processes of ionospheric depletions. Review of Scientific Instruments, 2016, 87, 093504.	1.3	21
41	The transition mechanisms of the E to H mode and the H to E mode in an inductively coupled argon-mercury mixture discharge. Physics of Plasmas, 2015, 22, .	1.9	15
42	Dependence of mode transition points and hysteresis upon plasma pressure in a re-entrant configuration of inductively coupled plasma. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33, 022601.	1.2	2
43	E→H mode transition density and power in two types of inductively coupled plasma configuration. Physics of Plasmas, 2014, 21, .	1.9	21
44	Flush-mounted probe diagnostics for argon glow discharge plasma. Review of Scientific Instruments, 2014, 85, 093505.	1.3	3
45	Coherent structure generated in the boundary layer of a laboratoryâ€created ionospheric depletion. Geophysical Research Letters, 2014, 41, 1413-1419.	4.0	16
46	Laboratory investigation of the boundary layer processes of artificially created ionospheric depletion. Journal of Geophysical Research: Space Physics, 2014, 119, 4134-4145.	2.4	10