Lucy Seldin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4785699/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metagenomic analysis of microbial communities across a transect from low to highly hydrocarbonâ€contaminated soils in King George Island, Maritime Antarctica. Geobiology, 2022, 20, 98-111.	1.1	9
2	Paenibacillus piscarius sp. nov., a novel nitrogen-fixing species isolated from the gut of the armored catfish Parotocinclus maculicauda. Antonie Van Leeuwenhoek, 2022, 115, 155-165.	0.7	3
3	Genomic analyses of a novel bioemulsifier-producing Psychrobacillus strain isolated from soil of King George Island, Antarctica. Polar Biology, 2022, 45, 691-701.	0.5	4
4	Unraveling the Tropaeolum majus L. (Nasturtium) Root-Associated Bacterial Community in Search of Potential Biofertilizers. Microorganisms, 2022, 10, 638.	1.6	4
5	Antimycobacterial and anti-inflammatory activities of metabolites from endophytic and soil fungi. Phytomedicine Plus, 2022, 2, 100312.	0.9	1
6	Genetics and regulation of nitrogen fixation in Paenibacillus brasilensis PB24. Microbiological Research, 2021, 243, 126647.	2.5	6
7	Long-term souring treatment using nitrate and biocides in high-temperature oil reservoirs. Fuel, 2021, 288, 119731.	3.4	15
8	Bacterial diversity changes in agricultural soils influenced by poultry litter fertilization. Brazilian Journal of Microbiology, 2021, 52, 675-686.	0.8	10
9	Dissimilatory Iron-Reducing Microorganisms Are Present and Active in the Sediments of the Doce River and Tributaries Impacted by Iron Mine Tailings from the Collapsed Fundão Dam (Mariana, MG, Brazil). Minerals (Basel, Switzerland), 2021, 11, 244.	0.8	5
10	Production of (2R,3R)-butanediol by Paenibacillus polymyxa PM 3605 from crude glycerol supplemented with sugarcane molasses. Process Biochemistry, 2021, 106, 88-95.	1.8	16
11	Bacillus velezensis H2O-1 surfactin efficiently maintains its interfacial properties in extreme conditions found in post-salt and pre-salt oil reservoirs. Colloids and Surfaces B: Biointerfaces, 2021, 208, 112072.	2.5	6
12	Bacillus velezensis T149-19 and Bacillus safensis T052-76 as Potential Biocontrol Agents against Foot Rot Disease in Sweet Potato. Agriculture (Switzerland), 2021, 11, 1046.	1.4	5
13	Chemical and biological dispersants differently affect the bacterial communities of uncontaminated and oil-contaminated marine water. Brazilian Journal of Microbiology, 2020, 51, 691-700.	0.8	4
14	Microbial enhanced oil recovery potential of surfactin-producing Bacillus subtilis AB2.0. Fuel, 2020, 272, 117730.	3.4	32
15	Adaptative transcriptional response of Dietzia cinnamea P4 strain to sunlight simulator. Archives of Microbiology, 2020, 202, 1701-1708.	1.0	0
16	Firmicutes in different soils of Admiralty Bay, King George Island, Antarctica. Polar Biology, 2019, 42, 2219-2226.	0.5	13
17	Surfactin from <i>Bacillus velezensis</i> H2Oâ€4: Production and Physicochemical Characterization for Postsalt Applications. Journal of Surfactants and Detergents, 2019, 22, 451-462.	1.0	8
18	Oxidative damage induced by H2O2 reveals SOS adaptive transcriptional response of Dietzia cinnamea strain P4. World Journal of Microbiology and Biotechnology, 2019, 35, 53.	1.7	2

#	Article	IF	CITATIONS
19	Nitrogen Fixing and Phosphate Mineralizing Bacterial Communities in Sweet Potato Rhizosphere Show a Genotype-Dependent Distribution. Diversity, 2019, 11, 231.	0.7	7
20	Fluoroquinolones in agricultural soils: Multi-temporal variation and risks in Rio de Janeiro upland region. Chemosphere, 2019, 219, 409-417.	4.2	28
21	Response of the microbial community associated with sweet potato (Ipomoea batatas) to Bacillus safensis and Bacillus velezensis strains. Antonie Van Leeuwenhoek, 2019, 112, 501-512.	0.7	12
22	Chemical characterization and potential application of exopolysaccharides produced by Ensifer adhaerens JHT2 as a bioemulsifier of edible oils. International Journal of Biological Macromolecules, 2018, 114, 18-25.	3.6	22
23	Response of marine bacteria to oil contamination and to high pressure and low temperature deep sea conditions. MicrobiologyOpen, 2018, 7, e00550.	1.2	22
24	Response of the Bacterial Communities Associated With Maize Rhizosphere to Poultry Litter as an Organomineral Fertilizer. Frontiers in Environmental Science, 2018, 6, .	1.5	16
25	The Endophytic Bacterial Microbiota Associated with Sweet Sorghum (<i>Sorghum bicolor</i>) Is Modulated by the Application of Chemical N Fertilizer to the Field. International Journal of Genomics, 2018, 2018, 1-10.	0.8	26
26	Biosurfactant Versus Commercial Surfactant: Study on Effectiveness for Application in EOR. , 2018, , .		1
27	2,3-Butanediol production by the non-pathogenic bacterium Paenibacillus brasilensis. Applied Microbiology and Biotechnology, 2018, 102, 8773-8782.	1.7	14
28	Distribution of Anaerobic Hydrocarbon-Degrading Bacteria in Soils from King George Island, Maritime Antarctica. Microbial Ecology, 2017, 74, 810-820.	1.4	27
29	Cultivable bacterial communities associated with roots of rose-scented geranium (Pelargonium) Tj ETQq1 1 0.	784314 rgB 2.1	T /Qverlock 1
30	A communal catalogue reveals Earth's multiscale microbial diversity. Nature, 2017, 551, 457-463.	13.7	1,942
31	The bacterial community associated with rose-scented geranium (Pelargonium graveolens) leaves responds to anthracnose symptoms. Plant and Soil, 2017, 414, 69-79.	1.8	5
32	Growth Inhibition of Sulfate-Reducing Bacteria in Produced Water from the Petroleum Industry Using Essential Oils. Molecules, 2017, 22, 648.	1.7	16
33	Generally recognized as safe (GRAS) Lactococcus lactis strains associated with Lippia sidoides Cham. are able to solubilize/mineralize phosphate. SpringerPlus, 2016, 5, 828.	1.2	28
34	Whole-Genome Sequence of Rummeliibacillus stabekisii Strain PP9 Isolated from Antarctic Soil. Genome Announcements, 2016, 4, .	0.8	5
35	Response of the bacterial community in oil-contaminated marine water to the addition of chemical and biological dispersants. Journal of Environmental Management, 2016, 184, 473-479.	3.8	16
36	Streptomyces lunalinharesii 235 prevents the formation of a sulfate-reducing bacterial biofilm. Brazilian Journal of Microbiology, 2016, 47, 603-609.	0.8	20

#	Article	IF	CITATIONS
37	A segment of rbcL gene as a potential tool for forensic discrimination of Cannabis sativa seized at Rio de Janeiro, Brazil. International Journal of Legal Medicine, 2016, 130, 353-356.	1.2	14
38	Exploiting the aerobic endospore-forming bacterial diversity in saline and hypersaline environments for biosurfactant production. BMC Microbiology, 2015, 15, 240.	1.3	23
39	Microbial diversity and hydrocarbon depletion in low and high diesel-polluted soil samples from Keller Peninsula, South Shetland Islands. Antarctic Science, 2015, 27, 263-273.	0.5	28
40	Bacillus amyloliquefaciens TSBSO 3.8, a biosurfactant-producing strain with biotechnological potential for microbial enhanced oil recovery. Colloids and Surfaces B: Biointerfaces, 2015, 136, 14-21.	2.5	60
41	Bacterial endophytes of sweet potato tuberous roots affected by the plant genotype and growth stage. Applied Soil Ecology, 2015, 96, 273-281.	2.1	54
42	Enzymes Produced by Halotolerant Spore-Forming Gram-Positive Bacterial Strains Isolated From a Resting Habitat (Restinga de Jurubatiba) in Rio de Janeiro, Brazil: Focus on Proteases. Applied Biochemistry and Biotechnology, 2014, 174, 2748-2761.	1.4	4
43	Endophytic microbial community in two transgenic maize genotypes and in their near-isogenic non-transgenic maize genotype. BMC Microbiology, 2014, 14, 332.	1.3	51
44	Brazilian Microbiome Project: Revealing the Unexplored Microbial Diversity—Challenges and Prospects. Microbial Ecology, 2014, 67, 237-241.	1.4	119
45	Response of the Archaeal Community to Simulated Petroleum Hydrocarbon Contamination in Marine and Hypersaline Ecosystems. Water, Air, and Soil Pollution, 2014, 225, 1.	1.1	12
46	Plant age and genotype affect the bacterial community composition in the tuber rhizosphere of field-grown sweet potato plants. FEMS Microbiology Ecology, 2014, 88, 424-435.	1.3	150
47	Different Effects of Transgenic Maize and Nontransgenic Maize on Nitrogen-Transforming Archaea and Bacteria in Tropical Soils. Applied and Environmental Microbiology, 2014, 80, 6437-6445.	1.4	41
48	Aerobic endospore-forming bacteria isolated from Antarctic soils as producers of bioactive compounds of industrial interest. Polar Biology, 2014, 37, 1121-1131.	0.5	23
49	Does the essential oil of Lippia sidoidesCham. (pepper-rosmarin) affect its endophytic microbial community?. BMC Microbiology, 2013, 13, 29.	1.3	17
50	Antimicrobial action and anti-corrosion effect against sulfate reducing bacteria by lemongrass (Cymbopogon citratus) essential oil and its major component, the citral. AMB Express, 2013, 3, 44.	1.4	57
51	Temporal dynamics of microbial communities in the rhizosphere of two genetically modified (GM) maize hybrids in tropical agrosystems. Antonie Van Leeuwenhoek, 2013, 103, 589-601.	0.7	15
52	The putative $\hat{l} \pm / \hat{l}^2$ -hydrolases of Dietzia cinnamea P4 strain as potential enzymes for biocatalytic applications. Antonie Van Leeuwenhoek, 2013, 103, 635-646.	0.7	9
53	Streptomyces lunalinharesiiStrain 235 Shows the Potential to Inhibit Bacteria Involved in Biocorrosion Processes. BioMed Research International, 2013, 2013, 1-10.	0.9	9
54	Bacterial Community Response to Petroleum Hydrocarbon Amendments in Freshwater, Marine, and Hypersaline Water-Containing Microcosms. Applied and Environmental Microbiology, 2013, 79, 5927-5935.	1.4	90

#	Article	IF	CITATIONS
55	Transcriptional profiling of genes involved in n-hexadecane compounds assimilation in the hydrocarbon degrading Dietzia cinnamea P4 strain. Brazilian Journal of Microbiology, 2013, 44, 639-647.	0.8	17
56	Extracellular proteases of Halobacillus blutaparonensis strain M9, a new moderately halophilic bacterium. Brazilian Journal of Microbiology, 2013, 44, 1299-1304.	0.8	17
57	The Use of a Combination of alkB Primers to Better Characterize the Distribution of Alkane-Degrading Bacteria. PLoS ONE, 2013, 8, e66565.	1.1	52
58	Molecular Analysis of the Bacterial Communities in Crude Oil Samples from Two Brazilian Offshore Petroleum Platforms. International Journal of Microbiology, 2012, 2012, 1-8.	0.9	37
59	Bacterial polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenases (PAH-RHD) encoding genes in different soils from King George Bay, Antarctic Peninsula. Applied Soil Ecology, 2012, 55, 1-9.	2.1	57
60	Distribution of alkane-degrading bacterial communities in soils from King George Island, Maritime Antarctic. European Journal of Soil Biology, 2012, 51, 37-44.	1.4	36
61	Purification and characterization of a surfactin-like molecule produced by Bacillus sp. H2O-1 and its antagonistic effect against sulfate reducing bacteria. BMC Microbiology, 2012, 12, 252.	1.3	55
62	Molecular diversity of nitrogen-fixing bacteria associated with Chrysopogon zizanioides (L.) Roberty (vetiver), an essential oil producer plant. Plant and Soil, 2012, 356, 101-111.	1.8	7
63	Nitrate treatment effects on bacterial community biofilm formed on carbon steel in produced water stirred tank bioreactor. World Journal of Microbiology and Biotechnology, 2012, 28, 2355-2363.	1.7	21
64	Antimicrobial activity of Paenibacillus kribbensis POC 115 against the dermatophyte Trichophyton rubrum. World Journal of Microbiology and Biotechnology, 2012, 28, 953-962.	1.7	11
65	Insight from the draft genome of Dietzia cinnamea P4 reveals mechanisms of survival in complex tropical soil habitats and biotechnology potential. Antonie Van Leeuwenhoek, 2012, 101, 289-302.	0.7	29
66	Bacterial communities within the rhizosphere and roots of vetiver (Chrysopogon zizanioides (L.)) Tj ETQq0 0 0 $r_{ m s}$	gBT_/Overlo	$\operatorname{pock}_{15}^{10}$ Tf 50
67	Cellulolytic potential of a novel strain of Paenibacillus sp. isolated from the armored catfish Parotocinclus maculicauda gut. Brazilian Journal of Microbiology, 2011, 42, 1608-1615.	0.8	9
68	Sinergismo Bacillus, Brevibacillus e, ou, Paenibacillus na simbiose Bradyrhizobium-caupi. Revista Brasileira De Ciencia Do Solo, 2011, 35, 713-721.	0.5	6
69	Comparative Bioremediation of Crude Oil-Amended Tropical Soil Microcosms by Natural Attenuation, Bioaugmentation, or Bioenrichment. Applied and Environmental Soil Science, 2011, 2011, 1-10.	0.8	18
70	Bacterial community associated with the trunk latex of Hancornia speciosa Gomes (Apocynaceae) grown in the northeast of Brazil. Antonie Van Leeuwenhoek, 2011, 99, 523-532.	0.7	17
71	Paenibacillus, Nitrogen Fixation and Soil Fertility. Soil Biology, 2011, , 287-307.	0.6	13
72	Cellulolytic potential of a novel strain of Paenibacillus sp. isolated from the armored catfish Parotocinclus maculicauda gut. Brazilian Journal of Microbiology, 2011, 42, 1608-15.	0.8	4

#	Article	IF	CITATIONS
73	Bacterial diversity in water injection systems of Brazilian offshore oil platforms. Applied Microbiology and Biotechnology, 2010, 85, 791-800.	1.7	53
74	Plant Growth Promoting Rhizobacteria: Fundamentals and Applications. Microbiology Monographs, 2010, , 21-43.	0.3	113
75	Polyphasic Analysis of the Bacterial Community in the Rhizosphere and Roots of Cyperus rotundus L. Grown in a Petroleum-Contaminated Soil. Journal of Microbiology and Biotechnology, 2010, 20, 862-870.	0.9	40
76	Comparison of the bacterial community and characterization of plant growth-promoting rhizobacteria from different genotypes of Chrysopogon zizanioides (L.) Roberty (Vetiver) rhizospheres. Journal of Microbiology, 2009, 47, 363-370.	1.3	28
77	Molecular detection and quantification of nifH gene sequences in the rhizosphere of sorghum (Sorghum bicolor) sown with two levels of nitrogen fertilizer. Applied Soil Ecology, 2009, 42, 48-53.	2.1	128
78	Action of antimicrobial substances produced by different oil reservoir Bacillus strains against biofilm formation. Applied Microbiology and Biotechnology, 2008, 79, 97-103.	1.7	33
79	Auxin production and detection of the gene coding for the Auxin Efflux Carrier (AEC) protein in Paenibacillus polymyxa. Journal of Microbiology, 2008, 46, 257-264.	1.3	28
80	Effect of nitrate injection on the bacterial community in a water-oil tank system analyzed by PCR-DGGE. Journal of Industrial Microbiology and Biotechnology, 2008, 35, 251-255.	1.4	15
81	Cyclodextrin production and genetic characterization of cyclodextrin glucanotranferase of Paenibacillus graminis. Biotechnology Letters, 2008, 30, 929-935.	1.1	9
82	Diversity of <i>nifH</i> gene pools in the rhizosphere of two cultivars of sorghum (<i>Sorghum) Tj ETQq0 0 0 rgBT 279, 15-22.</i>	/Overlock 0.7	2 10 Tf 50 38 99
83	Antimicrobial activity ofPaenibacillus polymyxaSCE2 against some mycotoxin-producing fungi. Journal of Applied Microbiology, 2008, 105, 1044-1053.	1.4	40
84	Production of an antimicrobial substance against Cryptococcus neoformans by Paenibacillus brasilensis Sa3 isolated from the rhizosphere of Kalanchoe brasiliensis. Microbiological Research, 2008, 163, 200-207.	2.5	28
85	Molecular detection of Oceanobacillus iheyensis in sand of Brazilian beaches. Journal of General and Applied Microbiology, 2008, 54, 305-310.	0.4	0
86	Molecular diversity of bacterial communities from subseafloor rock samples in a deep-water production basin in Brazil. Journal of Microbiology and Biotechnology, 2008, 18, 5-14.	0.9	70
87	Bacterial and fungal communities in bulk soil and rhizospheres of aluminum-tolerant and aluminum-sensitive maize (Zea mays L.) lines cultivated in unlimed and limed Cerrado soil. Journal of Microbiology and Biotechnology, 2008, 18, 805-14.	0.9	14
88	Bioremediation potential of a tropical soil contaminated with a mixture of crude oil and production water. Journal of Microbiology and Biotechnology, 2008, 18, 1966-74.	0.9	14
89	Phenotypic and genotypic characterization of Paenibacillus larvae isolates. Veterinary Microbiology, 2007, 124, 178-183.	0.8	34
90	Identification and biodegradation potential of a novel strain of Dietzia cinnamea isolated from a petroleum-contaminated tropical soil. Systematic and Applied Microbiology, 2007, 30, 331-339.	1.2	74

#	Article	IF	CITATIONS
91	Comparative studies of phenotypic and genetic characteristics between two desulfurizing isolates of Rhodococcus erythropolis and the well-characterized R. erythropolis strain IGTS8. Journal of Industrial Microbiology and Biotechnology, 2007, 34, 423-431.	1.4	20
92	Diversity of Paenibacillus spp. in the rhizosphere of four sorghum (Sorghum bicolor) cultivars sown with two contrasting levels of nitrogen fertilizer assessed by rpoB-based PCR-DGGE and sequencing analysis. Journal of Microbiology and Biotechnology, 2007, 17, 753-60.	0.9	19
93	Diversity ofÂPaenibacillusÂdurus strains isolated from soil andÂdifferent plant rhizospheres evaluated byÂARDRA andÂgyrB-RFLP analysis. European Journal of Soil Biology, 2006, 42, 200-207.	1.4	8
94	Influence of growth conditions on the production of extracellular proteolytic enzymes in Paenibacillus peoriae NRRL BD-62 and Paenibacillus polymyxa SCE2. Letters in Applied Microbiology, 2006, 43, 625-630.	1.0	45
95	Characterization of Gordonia sp. strain F.5.25.8 capable of dibenzothiophene desulfurization and carbazole utilization. Applied Microbiology and Biotechnology, 2006, 71, 355-362.	1.7	57
96	Oil biodegradation by Bacillus strains isolated from the rock of an oil reservoir located in a deep-water production basin in Brazil. Applied Microbiology and Biotechnology, 2006, 73, 949-959.	1.7	70
97	Evaluation of the diversity of cyclodextrin-producing Paenibacillus graminis strains isolated from roots and rhizospheres of different plants by molecular methods. Journal of Microbiology, 2006, 44, 591-9.	1.3	9
98	Production of antimicrobial substances by Bacillus subtilis LFE-1, B. firmus H2O-1 and B. licheniformis T6-5 isolated from an oil reservoir in Brazil. Journal of Applied Microbiology, 2005, 98, 667-675.	1.4	67
99	Assessment of the diversity of Paenibacillus species in environmental samples by a novel rpoB-based PCR-DGGE method. FEMS Microbiology Ecology, 2005, 53, 317-328.	1.3	41
100	Antifungal and Root Surface Colonization Properties of GFP-Tagged Paenibacillus brasilensis PB177. World Journal of Microbiology and Biotechnology, 2005, 21, 1591-1597.	1.7	54
101	Influence of petroleum contamination and biostimulation treatment on the diversity of Pseudomonas spp. in soil microcosms as evaluated by 16S rRNA based-PCR and DGGE. Letters in Applied Microbiology, 2004, 38, 93-98.	1.0	27
102	Use of rpoB gene analysis for identification of nitrogen-fixing Paenibacillus species as an alternative to the 16S rRNA gene. Letters in Applied Microbiology, 2004, 39, 34-40.	1.0	40
103	Impact of oil contamination and biostimulation on the diversity of indigenous bacterial communities in soil microcosms. FEMS Microbiology Ecology, 2004, 49, 295-305.	1.3	90
104	Characterization of nitrogen-fixingPaenibacillusspecies by polymerase chain reaction–restriction fragment length polymorphism analysis of part of genes encoding 16S rRNA and 23S rRNA and by multilocus enzyme electrophoresis. FEMS Microbiology Letters, 2003, 222, 243-250.	0.7	36
105	Antimicrobial activity of Paenibacillus peoriae strain NRRL BD-62 against a broad spectrum of phytopathogenic bacteria and fungi. Journal of Applied Microbiology, 2003, 95, 1143-1151.	1.4	105
106	Application of a novel Paenibacillus-specific PCR-DGGE method and sequence analysis to assess the diversity of Paenibacillus spp. in the maize rhizosphere. Journal of Microbiological Methods, 2003, 54, 213-231.	0.7	84
107	Genetic diversity of Paenibacillus polymyxa populations isolated from the rhizosphere of four cultivars of maize (Zea mays) planted in Cerrado soil. Applied Soil Ecology, 2002, 20, 119-132.	2.1	31
108	Pattern III Non-toxigenic Bacteroides fragilis (NTBF) Strains in Brazil. Anaerobe, 2002, 8, 17-22.	1.0	8

#	Article	IF	CITATIONS
109	Paenibacillus brasilensis sp. nov., a novel nitrogen-fixing species isolated from the maize rhizosphere in Brazil International Journal of Systematic and Evolutionary Microbiology, 2002, 52, 2147-2153.	0.8	78
110	Variability of isolated colonies in bean nodulating Rhizobium strains before and after exposure to high temperature. Brazilian Journal of Microbiology, 2002, 33, .	0.8	4
111	Analysis of Bacterial Community Structure in Sulfurous-Oil-Containing Soils and Detection of Species Carrying Dibenzothiophene Desulfurization (dsz) Genes. Applied and Environmental Microbiology, 2001, 67, 1052-1062.	1.4	133
112	Diversity of Paenibacillus polymyxa strains isolated from the rhizosphere of maize planted in Cerrado soil. Research in Microbiology, 2000, 151, 369-381.	1.0	90
113	Use of rep-PCR to define genetic relatedness among Bacteroides fragilis strains. Journal of Medical Microbiology, 2000, 49, 279-284.	0.7	13
114	Random amplified polymorphic DNA analysis of effective Rhizobium sp. associated with beans cultivated in brazilian cerrado soils. Brazilian Journal of Microbiology, 2000, 31, 39-44.	0.8	9
115	Inhibitory activity of Paenibacillus polymyxa SCE2 against human pathogenic microâ€organisms. Letters in Applied Microbiology, 1999, 28, 423-427.	1.0	31
116	Phenotypic and genetic diversity among Bacillus sphaericus strains isolated in Brazil, potentially useful as biological control agents against mosquito larvae. Research in Microbiology, 1999, 150, 153-160.	1.0	14
117	Bacteroides fragilis isolates compared by AP-PCR. Research in Microbiology, 1999, 150, 257-263.	1.0	12
118	A new strain of Bacillus thuringiensis Serovar israelensis very active against blackfly larvae. Memorias Do Instituto Oswaldo Cruz, 1999, 94, 683-685.	0.8	7
119	Phenotypic and genetic diversity of Paenibacillus azotofixans strains isolated from the rhizoplane or rhizosphere soil of different grasses. Journal of Applied Microbiology, 1998, 84, 216-226.	1.4	58
120	Extraction of ribosomal RNA and genomic DNA from soil for studying the diversity of the indigenous bacterial community Journal of Microbiological Methods, 1998, 32, 21-29.	0.7	91
121	Comparison of <i>Paenibacillus azotofixans</i> Strains Isolated from Rhizoplane, Rhizosphere, and Non-Root-Associated Soil from Maize Planted in Two Different Brazilian Soils. Applied and Environmental Microbiology, 1998, 64, 3860-3868.	1.4	105
122	Genetic Diversity of <i>nifH</i> Gene Sequences in <i>Paenibacillus azotofixans</i> Strains and Soil Samples Analyzed by Denaturing Gradient Gel Electrophoresis of PCR-Amplified Gene Fragments. Applied and Environmental Microbiology, 1998, 64, 2770-2779.	1.4	147
123	Effects of high temperature on survival, symbiotic performance and genomic modifications of bean nodulating Rhizobium strains. Revista De Microbiologia, 1998, 29, 295-300.	0.1	8
124	Genomic heterogeneity within bean nodulating Rhizobium strains isolated from cerrado soils. Soil Biology and Biochemistry, 1997, 29, 1011-1014.	4.2	4
125	Evaluation of Biolog system for identification of strains of Paenibacillus azotofixans. , 1997, 71, 195-200.		19
126	Quantitative 16S rDNA-targeted polymerase chain reaction and oligonucleotide hybridization for the detection of Paenibacillus azotofixans in soil and the wheat rhizosphere. FEMS Microbiology Ecology, 1996, 19, 153-164.	1.3	55

#	Article	IF	CITATIONS
127	NewBacillus bacteriophage species. Archives of Virology, 1994, 135, 333-344.	0.9	24
128	Optimization of electroporation procedure to transform B. polymyxa SCE2 and other nitrogen-fixing Bacillus. Journal of Microbiological Methods, 1994, 19, 1-11.	0.7	18
129	Production of a potentially novel anti-microbial substance by Bacillus polymyxa. World Journal of Microbiology and Biotechnology, 1993, 9, 521-528.	1.7	61
130	The species concept and its application to tailed phages. Archives of Virology, 1992, 124, 69-82.	0.9	65
131	Identification of Bacillus azotofixans using API tests. Antonie Van Leeuwenhoek, 1986, 52, 403-409.	0.7	53
132	Bacillus polymyxa bacteriophages from Brazilian soils. Antonie Van Leeuwenhoek, 1984, 50, 39-51.	0.7	11
133	Bacillus nitrogen fixers from Brazilian soils. Plant and Soil, 1983, 70, 243-255.	1.8	77