Robert Koncki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/478518/publications.pdf

Version: 2024-02-01

105 papers

2,891 citations

30 h-index 214721 47 g-index

105 all docs

105
docs citations

105 times ranked 2165 citing authors

#	Article	IF	CITATIONS
1	Bioanalytical insight into the life of microbial populations: A chemical monitoring of ureolytic bacteria growth. Enzyme and Microbial Technology, 2022, 153, 109899.	1.6	2
2	Multicommutation flow analysis system for non-enzymatic lactate determination based on light-driven photometric assay. Analytica Chimica Acta, 2022, 1210, 339878.	2.6	2
3	The comparison between light-scattering detectors based on LED and photodiode for immunoprecipitation assays of transferrin and ferritin. Analytica Chimica Acta, 2021, 1175, 338753.	2.6	3
4	Multicommutated Flow Analysis System for Determination of Horseradish Peroxidase and Its Inhibitors. Molecules, 2021, 26, 5630.	1.7	2
5	Solid reference electrode integrated with paper-based microfluidics for potentiometric ion sensing. Sensors and Actuators B: Chemical, 2020, 323, 128680.	4.0	37
6	Towards mechanized biparametric ceruloplasmin assay. Talanta, 2020, 214, 120881.	2.9	5
7	LED&Paper-based analytical device for phosphatemia/calcemia diagnosticsa~†. Journal of Pharmaceutical and Biomedical Analysis, 2020, 186, 113321.	1.4	1
8	Optoelectronic detectors for flow analysis systems manufactured by means of rapid prototyping technology. Talanta, 2019, 198, 169-178.	2.9	17
9	A multi-pumping flow analysis system for \hat{l}^2 -galactosidase activity assays. Food Chemistry, 2019, 294, 231-237.	4.2	7
10	A remote-controlled immunochemical system for nephelometric detection of human serum transferrin. Biosensors and Bioelectronics, 2019, 127, 31-37.	5.3	4
11	A mechanized urease activity assay. Enzyme and Microbial Technology, 2019, 123, 1-7.	1.6	16
12	Paired Light-Emitting Diodes for Educational Purposes: Comment on "Demonstrating Basic Properties of Spectroscopy Using a Self-Constructed Combined Fluorimeter and UV-Photometerâ€. Journal of Chemical Education, 2018, 95, 496-497.	1.1	1
13	Microfluidic Analysis with Front-Face Fluorometric Detection for the Determination of Total Inorganic Iodine in Drinking Water. Analytical Sciences, 2018, 34, 161-167.	0.8	10
14	A comparison of photometric methods for serum iron determination under flow analysis conditions. Sensors and Actuators B: Chemical, 2018, 254, 307-313.	4.0	10
15	Disaccharides Determination: A Review of Analytical Methods. Critical Reviews in Analytical Chemistry, 2018, 48, 186-213.	1.8	21
16	Compact detectors made of paired LEDs for photometric and fluorometric measurements on paper. Talanta, 2018, 178, 31-36.	2.9	26
17	Flow injection analysis in lab-on-paper format. Sensors and Actuators B: Chemical, 2018, 257, 16-22.	4.0	16
18	Photometric and fluorometric alkaline phosphatase assays using the simplest enzyme substrates. Talanta, 2018, 190, 193-198.	2.9	12

#	Article	IF	CITATIONS
19	Photometric flow analysis system for biomedical investigations of iron/transferrin speciation in human serum. Analytica Chimica Acta, 2017, 995, 43-51.	2.6	15
20	Optoelectronic iron detectors for pharmaceutical flow analysis. Journal of Pharmaceutical and Biomedical Analysis, 2017, 145, 504-508.	1.4	8
21	Biomedical analytical monitor of artificial kidney operation: Monitoring of creatinine removal. Journal of Pharmaceutical and Biomedical Analysis, 2016, 128, 28-34.	1.4	12
22	Biomedical monitoring of phosphate removal by hemodialysis. Journal of Pharmaceutical and Biomedical Analysis, 2016, 126, 9-13.	1.4	8
23	A multicommutated tester of bioreactors for flow analysis. Talanta, 2016, 160, 233-240.	2.9	11
24	Bianalyte multicommutated flow analysis system for microproteinuria diagnostics. Talanta, 2016, 148, 707-711.	2.9	12
25	Optoelectronic detectors and flow analysis systems for determination of dialysate urea nitrogen. Sensors and Actuators B: Chemical, 2016, 226, 563-569.	4.0	17
26	Towards optoelectronic urea biosensors. Analytical and Bioanalytical Chemistry, 2015, 407, 1807-1812.	1.9	11
27	Multicommutated flow analysis system based on fluorescence microdetectors for simultaneous determination of phosphate and calcium ions in human serum. Talanta, 2015, 144, 184-188.	2.9	22
28	An immunoprecipitation assay in the multicommutated flow analysis format. Analyst, The, 2015, 140, 7271-7277.	1.7	9
29	Hybrid flow system integrating a miniaturized optoelectronic detector for on-line dynamic fractionation and fluorometric determination of bioaccessible orthophosphate in soils. Talanta, 2015, 133, 59-65.	2.9	14
30	A bimodal optoelectronic flow-through detector for phosphate determination. Talanta, 2014, 128, 211-214.	2.9	18
31	Multicommutated flow analysis system for determination of total protein in cerebrospinal fluid. Talanta, 2014, 128, 38-43.	2.9	9
32	A Novel Optoelectronic Detector and Improved Flow Analysis Procedure for Ammonia Determination with Nessler's Reagent. Analytical Sciences, 2014, 30, 1019-1022.	0.8	23
33	Nephelometry and turbidimetry with paired emitter detector diodes and their application for determination of total urinary protein. Analytica Chimica Acta, 2013, 788, 68-73.	2.6	27
34	Biparametric multicommutated flow analysis system for determination of human serum phosphoesterase activity. Analytica Chimica Acta, 2013, 797, 57-63.	2.6	19
35	Multicommutated flow analysis system for determination of creatinine in physiological fluids by Jaffe method. Analytica Chimica Acta, 2013, 787, 118-125.	2.6	25
36	Towards the development of a miniaturized fiberless optofluidic biosensor for glucose. Talanta, 2012, 96, 113-120.	2.9	26

3

#	Article	IF	CITATIONS
37	Serum alkaline phosphatase assay with paired emitter detector diode. Talanta, 2012, 96, 127-131.	2.9	18
38	Compact optoelectronic flow-through device for fluorometric determination of calcium ions. Talanta, $2012, 93, 106-110$.	2.9	18
39	Low-cost optical detectors and flow systems for protein determination. Talanta, 2012, 96, 121-126.	2.9	27
40	Fluorimetric detector and sensor for flow analysis made of light emitting diodes. Analytica Chimica Acta, 2012, 721, 92-96.	2.6	22
41	Fluorometric paired emitter detector diode (FPEDD). Analyst, The, 2011, 136, 73-76.	1.7	22
42	Hemoglobin determination with paired emitter detector diode. Analytical and Bioanalytical Chemistry, 2011, 399, 3293-3297.	1.9	37
43	Miniaturized optical chemosensor for flow-based assays. Analytical and Bioanalytical Chemistry, 2011, 399, 1381-1387.	1.9	28
44	Analytical study on cofactor biorecognition by immobilized alkaline apophosphatase. Sensors and Actuators B: Chemical, 2011, 155, 323-330.	4.0	3
45	Poly(vinyl chloride) tubing with covalently bound alkaline phosphatase and alternative approach for investigations of open-tubular bioreactors. Analytical Biochemistry, 2010, 400, 151-153.	1.1	16
46	A concept of dual optical detection using three light emitting diodes. Talanta, 2010, 82, 422-425.	2.9	28
47	Simplified paired-emitter–detector-diodes-based photometry with improved sensitivity. Analytica Chimica Acta, 2009, 639, 73-77.	2.6	54
48	UV-PEDD photometry dedicated for bioanalytical uses. Analyst, The, 2009, 134, 1333.	1.7	29
49	A single standard calibration module for flow analysis systems based on solenoid microdevices. Talanta, 2009, 79, 205-210.	2.9	28
50	An automated potentiometric assay for acid phosphatase. Analytical Biochemistry, 2008, 381, 169-171.	1.1	12
51	Analytical aspects of hemodialysis. TrAC - Trends in Analytical Chemistry, 2008, 27, 304-314.	5.8	11
52	Paired emitter detector diode (PEDD)-based photometry – an alternative approach. Analyst, The, 2008, 133, 1501.	1.7	62
53	Potentiometric flow-injection system for determination of alkaline phosphatase in human serum. Analytica Chimica Acta, 2007, 600, 194-198.	2.6	12
54	Recent developments in potentiometric biosensors for biomedical analysis. Analytica Chimica Acta, 2007, 599, 7-15.	2.6	128

#	Article	IF	CITATIONS
55	Potentialities of pH-electrode modified with alkaline phosphatase. Sensors and Actuators B: Chemical, 2007, 127, 632-636.	4.0	7
56	pH-metric detection of alkaline phosphatase activity as a novel biosensing platform. Talanta, 2006, 68, 1020-1025.	2.9	14
57	Miniaturized, Planar Ion-selective Electrodes Fabricated by Means of Thick-film Technology. Sensors, 2006, 6, 390-396.	2.1	53
58	Flow injection system for potentiometric determination of alkaline phosphatase inhibitors. Analytica Chimica Acta, 2006, 577, 134-139.	2.6	29
59	Thick-film potentiometric biosensor for bloodless monitoring of hemodialysis. Sensors and Actuators B: Chemical, 2006, 113, 782-786.	4.0	17
60	Strip bioelectrochemical cell for potentiometric measurements fabricated by screen-printing. Analytica Chimica Acta, 2005, 538, 251-256.	2.6	25
61	Potentiometric assay for acid and alkaline phosphatase. Analytica Chimica Acta, 2005, 538, 257-261.	2.6	25
62	Screen-printed disposable urease-based biosensors for inhibitive detection of heavy metal ions. Sensors and Actuators B: Chemical, 2005, 106, 450-454.	4.0	52
63	Bioanalytical system for control of hemodialysis treatment based on potentiometric biosensors for urea and creatinine. Analytica Chimica Acta, 2004, 523, 193-200.	2.6	46
64	Screen-printed reference electrodes for potentiometric measurements. Analytica Chimica Acta, 2004, 526, 3-11.	2.6	124
65	Creatinine biosensor based on ammonium ion selective electrode and its application in flow-injection analysis. Talanta, 2004, 64, 603-608.	2.9	67
66	Application of Prussian Blue Based Composite Film with Functionalized Organic Polymer to Construction of Enzymatic Glucose Biosensor. Electroanalysis, 2003, 15, 1843-1849.	1.5	43
67	Determination of dialysate creatinine by micellar electrokinetic chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2003, 789, 417-424.	1.2	15
68	Strip thick-film silver ion-selective electrodes. Sensors and Actuators B: Chemical, 2003, 96, 482-488.	4.0	24
69	Chemical Sensors and Biosensors Based on Prussian Blues. Critical Reviews in Analytical Chemistry, 2002, 32, 79-96.	1.8	142
70	Optical biosensors based on Prussian Blue films. Analyst, The, 2001, 126, 1080-1085.	1.7	63
71	Spectrophotometric bioanalytical flow-injection system for control of hemodialysis treatment. Analyst, The, 2001, 126, 1564-1567.	1.7	20
72	Application of Prussian blue-based optical sensor in pharmaceutical analysis. Journal of Pharmaceutical and Biomedical Analysis, 2001, 26, 163-169.	1.4	35

#	Article	IF	CITATIONS
73	Prussian blue-based optical glucose biosensor in flow-injection analysis. Analytica Chimica Acta, 2001, 447, 23-32.	2.6	37
74	POTENTIOMETRIC THICK-FILM GRAPHITE ELECTRODES WITH IMPROVED RESPONSE TO COPPER IONS. Analytical Letters, 2001, 34, 71-78.	1.0	19
75	Quick Cuvette Test for Thiol Compounds. Analytical Letters, 2000, 33, 137-144.	1.0	9
76	Bioanalytical flow-injection system for control of hemodialysis adequacy. Analytica Chimica Acta, 2000, 418, 213-224.	2.6	41
77	Optical sensing schemes for Prussian Blue/Prussian White film system. Analytica Chimica Acta, 2000, 424, 27-35.	2.6	44
78	Screen-printed copper ion-selective electrodes. Fresenius' Journal of Analytical Chemistry, 2000, 367, 393-395.	1.5	19
79	Potentiometric determination of dialysate urea nitrogen. Talanta, 2000, 52, 13-17.	2.9	33
80	Composite films of Prussian blue and N-substituted polypyrroles: covalent immobilization of enzymes and application to near infrared optical biosensing. Biosensors and Bioelectronics, 1999, 14, 87-92.	5.3	40
81	Enzymatically modified ion-selective electrodes for flow injection analysis. Journal of Pharmaceutical and Biomedical Analysis, 1999, 19, 633-638.	1.4	20
82	Urea determination using pH–enzyme electrode. Journal of Pharmaceutical and Biomedical Analysis, 1999, 21, 51-57.	1.4	29
83	Disposable integrated cuvette test for quantitative determination of vitamin C in pharmaceutical products. Analytica Chimica Acta, 1999, 379, 69-74.	2.6	26
84	Disposable strip potentiometric electrodes with solvent-polymeric ion-selective membranes fabricated using screen-printing technology. Analytica Chimica Acta, 1999, 385, 451-459.	2.6	52
85	Potentiometric biosensor for control of biotechnological production of penicillin G. Analytica Chimica Acta, 1998, 368, 205-210.	2.6	19
86	Potentiometric enzyme electrode in a flow injection system for the determination of urea in human serum samples. Analytica Chimica Acta, 1998, 369, 129-137.	2.6	54
87	Immunoenzymatic sensitisation of membrane ion-selective electrodes. Sensors and Actuators B: Chemical, 1998, 47, 246-250.	4.0	12
88	Optical chemical sensing based on thin films of Prussian Blue. Sensors and Actuators B: Chemical, 1998, 51, 355-358.	4.0	34
89	Composite Films of Prussian Blue and N-Substituted Polypyrroles:Â Fabrication and Application to Optical Determination of pH. Analytical Chemistry, 1998, 70, 2544-2550.	3.2	121
90	Screen-printed ruthenium dioxide electrodes for pH measurements. Analytica Chimica Acta, 1997, 351, 143-149.	2.6	81

#	Article	IF	Citations
91	Penicillin enzyme biosensors based on pH membrane electrodes. Analytica Chimica Acta, 1996, 321, 27-34.	2.6	21
92	Bienzymatic potentiometric electrodes for creatine and l-arginine determination. Analytica Chimica Acta, 1996, 333, 215-222.	2.6	50
93	Urea Biosensors Based on PVC Membrane Ion-Selective Electrodes. Analytical Letters, 1996, 29, 1939-1953.	1.0	20
94	Enzyme biosensors for urea determination based on an ionophore free pH membrane electrode. Analytica Chimica Acta, 1995, 315, 289-296.	2.6	36
95	Enzyme biosensor for urea based on a novel pH bulk optode membrane. Biosensors and Bioelectronics, 1995, 10, 653-659.	5.3	56
96	Kinetic model of pH-based potentiometric enzymic sensors. Part 4. Enzyme loading and lifetime factors. Analyst, The, 1995, 120, 489-493.	1.7	5
97	Comparison of pH-Membrane Enzyme Electrodes for Urea with Covalently Bound Enzyme Analytical Letters, 1994, 27, 475-486.	1.0	25
98	Urea sensors based on PVC membrane pH electrode. Talanta, 1994, 41, 1201-1205.	2.9	32
99	Simplex method for the computation of analytical parameters of potentiometric sensors. Analytica Chimica Acta, 1993, 273, 477-483.	2.6	11
100	Kinetic model of pH-based potentiometric enzymic sensors. Part 2. Method of fitting. Analyst, The, 1992, 117, 1671-1674.	1.7	9
101	Kinetic model of pH-based potentiometric enzymic sensors. Part 3. Experimental verification. Analyst, The, 1992, 117, 1675-1678.	1.7	20
102	Urea sensors based on glass pH electrodes with physically immobilized urease. Analytica Chimica Acta, 1992, 257, 67-72.	2.6	45
103	Kinetic model of pH-based potentiometric enzymic sensors. Part 1. Theoretical considerations. Analyst, The, 1991, 116, 453-458.	1.7	30
104	Theoretical model of the response of pH-based enzyme sensors. Electroanalysis, 1991, 3, 361-364.	1.5	6
105	Enzymes in Flow Injection Analysis. , 0, , 395-423.		1