
Yujun Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4784573/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Room-Temperature Phosphorescence of Nicotinic Acid and Isonicotinic Acid: Efficient Intermolecular Hydrogen-Bond Interaction in Molecular Array. Journal of Physical Chemistry Letters, 2022, 13, 1652-1659.	2.1	9
2	Advances in Pure Organic Mechanoluminescence Materials. Journal of Physical Chemistry Letters, 2022, 13, 5605-5617.	2.1	23
3	Development of aggregated state chemistry accelerated by aggregation-induced emission. National Science Review, 2021, 8, nwaa199.	4.6	51
4	Aggregation-enhanced emission in tetraphenylpyrazine-based luminogens: theoretical modulation and experimental validation. Materials Chemistry Frontiers, 2021, 5, 5012-5023.	3.2	10
5	A pyridinium salt with crystalline phase transformation under water vapor and reversible mechanochromic luminescent properties. Journal of Materials Chemistry C, 2021, 9, 11738-11744.	2.7	12
6	The Progress of Circularly Polarized Luminescence in Chiral Purely Organic Materials. Advanced Photonics Research, 2021, 2, 2000136.	1.7	51
7	Different molecular conformation and packing determining mechanochromism and room-temperature phosphorescence. Science China Materials, 2021, 64, 2813-2823.	3.5	34
8	Aggregationâ€induced emission: Red and nearâ€infrared organic lightâ€emitting diodes. SmartMat, 2021, 2, 326-346.	6.4	88
9	Diversity of Luminescent Metal Complexes in OLEDs: Beyond Traditional Precious Metals. Chemistry - an Asian Journal, 2021, 16, 2817-2829.	1.7	41
10	Alkyl chain regulation: distinctive odd–even effects of mechano-luminescence and room-temperature phosphorescence in alkyl substituted carbazole amide derivatives. Journal of Materials Chemistry C, 2021, 9, 12124-12132.	2.7	16
11	Intramolecular-locked triphenylamine derivatives with adjustable room temperature phosphorescence properties by the substituent effect. Materials Chemistry Frontiers, 2021, 6, 33-39.	3.2	11
12	The development of mechanoluminescence from organic compounds: breakthrough and deep insight. Materials Chemistry Frontiers, 2020, 4, 317-331.	3.2	90
13	1.42-Fold Enhancement of Blue OLED Device Performance by Simply Changing Alkyl Groups on the Acridine Ring. Cell Reports Physical Science, 2020, 1, 100252.	2.8	24
14	Elucidation of distinct fluorescence and room-temperature phosphorescence of organic polymorphs from benzophenone–borate derivatives. Physical Chemistry Chemical Physics, 2020, 22, 21445-21452.	1.3	11
15	Roomâ€Temperature Phosphorescence Resonance Energy Transfer for Construction of Nearâ€Infrared Afterglow Imaging Agents. Advanced Materials, 2020, 32, e2006752.	11.1	265
16	Structural Design of Blueâ€ŧoâ€Red Thermallyâ€Activated Delayed Fluorescence Molecules by Adjusting the Strength between Donor and Acceptor. Asian Journal of Organic Chemistry, 2020, 9, 1262-1276.	1.3	41
17	Utilizing Electroplex Emission to Achieve External Quantum Efficiency up to 18.1% in Nondoped Blue OLED. Research, 2020, 2020, 8649102.	2.8	12
18	Modulation of Acceptor Position in Organic Sensitizers: The Optimization of Intramolecular and Interfacial Charge Transfer Processes. ACS Applied Materials & Interfaces, 2019, 11, 27648-27657.	4.0	20

Yujun Xie

#	Article	IF	CITATIONS
19	Recent Advances in the <i>Z</i> / <i>E</i> â€Isomers of Tetraphenylethene Derivatives: Stereoselective Synthesis, AIE Mechanism, Photophysical Properties, and Application as Chemical Probes. Chemistry - an Asian Journal, 2019, 14, 2524-2541.	1.7	55
20	Tetraphenylcyclopentadiene-Based Hyperbranched Polymers: Convenient Syntheses from One Pot "A ₄ + B ₂ ―Polymerization and High External Quantum Yields up to 9.74% in OLED Devices. Macromolecules, 2019, 52, 896-903.	2.2	19
21	The influence of the molecular packing on the room temperature phosphorescence of purely organic luminogens. Nature Communications, 2018, 9, 840.	5.8	764
22	Triboluminescence: Recalling Interest and New Aspects. CheM, 2018, 4, 943-971.	5.8	216
23	A Green and Highly Efficient Naphthalimide Visible Photoinitiator with an Ability Initiating Free Radical Polymerization under Air. Macromolecular Chemistry and Physics, 2018, 219, 1800256.	1.1	22
24	Unexpected room-temperature phosphorescence from a non-aromatic, low molecular weight, pure organic molecule through the intermolecular hydrogen bond. Materials Chemistry Frontiers, 2018, 2, 2124-2129.	3.2	138
25	Tunable Aggregation-Induced Emission Nanoparticles by Varying Isolation Groups in Perylene Diimide Derivatives and Application in Three-Photon Fluorescence Bioimaging. ACS Nano, 2018, 12, 9532-9540.	7.3	106
26	Photo-crosslinkable second-order nonlinear optical polymer: facile synthesis and enhanced NLO thermostability. Polymer Chemistry, 2018, 9, 3522-3527.	1.9	19
27	How the Molecular Packing Affects the Room Temperature Phosphorescence in Pure Organic Compounds: Ingenious Molecular Design, Detailed Crystal Analysis, and Rational Theoretical Calculations. Advanced Materials, 2017, 29, 1606829.	11.1	351
28	The marriage of AIE and interface engineering: convenient synthesis and enhanced photovoltaic performance. Chemical Science, 2017, 8, 3750-3758.	3.7	41
29	Ar–Ar ^F Selfâ€Assembly of Starâ€Shaped Secondâ€Order Nonlinear Optical Chromophores Achieving Large Macroscopic Nonlinearities. Advanced Electronic Materials, 2017, 3, 1700138.	2.6	27
30	Reaction-based conjugated polymer fluorescent probe for mercury(<scp>ii</scp>): good sensing performance with "turn-on―signal output. Polymer Chemistry, 2017, 8, 2221-2226.	1.9	48
31	AlEgen with Fluorescence–Phosphorescence Dual Mechanoluminescence at Room Temperature. Angewandte Chemie - International Edition, 2017, 56, 880-884.	7.2	250
32	AlEgen with Fluorescence–Phosphorescence Dual Mechanoluminescence at Room Temperature. Angewandte Chemie, 2017, 129, 898-902.	1.6	90
33	Thermally Activated Delayed Fluorescent Polymers. Journal of Polymer Science Part A, 2017, 55, 575-584.	2.5	62
34	Abnormal room temperature phosphorescence of purely organic boron-containing compounds: the relationship between the emissive behaviorand the molecular packing, and the potential related applications. Chemical Science, 2017, 8, 8336-8344.	3.7	176
35	Alkyl chain engineering of pyrene-fused perylene diimides: impact on transport ability and microfiber self-assembly. Materials Chemistry Frontiers, 2017, 1, 2341-2348.	3.2	23
36	Pyreneâ€Fused Perylene Diimides: New Building Blocks to Construct Nonâ€Fullerene Acceptors With Extremely High Openâ€Circuit Voltages up to 1.26 V. Solar Rrl, 2017, 1, 1700123.	3.1	24

Yujun Xie

#	Article	IF	CITATIONS
37	Mechanoluminescence from pure hydrocarbon AlEgen. Chemical Communications, 2017, 53, 11330-11333.	2.2	79
38	FTC-containing molecules: large second-order nonlinear optical performance and excellent thermal stability, and the key development of the "Isolation Chromophore―concept. Journal of Materials Chemistry C, 2016, 4, 11474-11481.	2.7	17
39	Using the isotope effect to probe an aggregation induced emission mechanism: theoretical prediction and experimental validation. Chemical Science, 2016, 7, 5573-5580.	3.7	67
40	Tetraphenylcyclopentadiene Derivatives: Aggregationâ€Induced Emission, Adjustable Luminescence from Green to Blue, Efficient Undoped OLED Performance and Good Mechanochromic Properties. Small, 2016, 12, 6623-6632.	5.2	44
41	Conjugated or Broken: The Introduction of Isolation Spacer ahead of the Anchoring Moiety and the Improved Device Performance. ACS Applied Materials & Interfaces, 2016, 8, 28652-28662.	4.0	14
42	From ACQ to AIE: the suppression of the strong π–Ĩ€ interaction of naphthalene diimide derivatives through the adjustment of their flexible chains. Chemical Communications, 2016, 52, 11496-11499.	2.2	145
43	Unraveling the aggregation effect on amorphous phase AIE luminogens: a computational study. Nanoscale, 2016, 8, 15173-15180.	2.8	112
44	Benzene-cored AlEgens for deep-blue OLEDs: high performance without hole-transporting layers, and unexpected excellent host for orange emission as a side-effect. Chemical Science, 2016, 7, 4355-4363.	3.7	85
45	A stable tetraphenylethene derivative: aggregation-induced emission, different crystalline polymorphs, and totally different mechanoluminescence properties. Materials Horizons, 2016, 3, 220-225.	6.4	228
46	Effect of Intermolecular Excited-state Interaction on Vibrationally Resolved Optical Spectra in Organic Molecular Aggregates. Acta Chimica Sinica, 2016, 74, 902.	0.5	27
47	Achieving Persistent Room Temperature Phosphorescence and Remarkable Mechanochromism from Pure Organic Luminogens. Advanced Materials, 2015, 27, 6195-6201.	11.1	513
48	Mitochondrionâ€Specific Liveâ€Cell Bioprobe Operated in a Fluorescence Turnâ€On Manner and a Wellâ€Designed Photoactivatable Mechanism. Advanced Materials, 2015, 27, 7093-7100.	11.1	89
49	Influences of Conjugation Extent on the Aggregationâ€Induced Emission Quantum Efficiency in Silole Derivatives: A Computational Study. Chemistry - an Asian Journal, 2015, 10, 2154-2161.	1.7	40
50	Similar or Totally Different: the Adjustment of the Twist Conformation Through Minor Structural Modification, and Dramatically Improved Performance for Dye‣ensitized Solar Cell. Advanced Energy Materials, 2015, 5, 1500846.	10.2	51
51	Unusual Aggregationâ€Induced Emission of a Coumarin Derivative as a Result of the Restriction of an Intramolecular Twisting Motion. Angewandte Chemie - International Edition, 2015, 54, 14492-14497.	7.2	207
52	Polyphenylbenzene as a Platform for Deep-Blue OLEDs: Aggregation Enhanced Emission and High External Quantum Efficiency of 3.98%. Chemistry of Materials, 2015, 27, 1847-1854.	3.2	88
53	SERS and NMR Studies of Typical Aggregation-Induced Emission Molecules. Journal of Physical Chemistry A, 2015, 119, 8049-8054.	1.1	19
54	"Turn-On―Fluorescent Probe for Mercury(II): High Selectivity and Sensitivity and New Design Approach by the Adjustment of the π-Bridge. ACS Applied Materials & Interfaces, 2015, 7, 11369-11376.	4.0	113

#	Article	IF	CITATIONS
55	New "X-type―second-order nonlinear optical (NLO) dendrimers: fewer chromophore moieties and high NLO effects. Journal of Materials Chemistry C, 2015, 3, 4545-4552.	2.7	31
56	From main-chain conjugated polymer photosensitizer to hyperbranched polymer photosensitizer: expansion of the polymerization-enhanced photosensitization effect for photodynamic therapy. Journal of Materials Chemistry B, 0, , .	2.9	13