Yujun Xie

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/4784573/publications.pdf
Version: 2024-02-01

1	The influence of the molecular packing on the room temperature phosphorescence of purely organic luminogens. Nature Communications, 2018, 9, 840.	5.8	764
2	Achieving Persistent Room Temperature Phosphorescence and Remarkable Mechanochromism from Pure Organic Luminogens. Advanced Materials, 2015, 27, 6195-6201.	11.1	513
3	How the Molecular Packing Affects the Room Temperature Phosphorescence in Pure Organic Compounds: Ingenious Molecular Design, Detailed Crystal Analysis, and Rational Theoretical Calculations. Advanced Materials, 2017, 29, 1606829.	11.1	351
4	Roomâ€đemperature Phosphorescence Resonance Energy Transfer for Construction of Nearâ€łnfrared Afterglow Imaging Agents. Advanced Materials, 2020, 32, e2006752.	11.1	265
5	AIEgen with Fluorescenceâ€"Phosphorescence Dual Mechanoluminescence at Room Temperature. Angewandte Chemie - International Edition, 2017, 56, 880-884.	7.2	250
6	A stable tetraphenylethene derivative: aggregation-induced emission, different crystalline polymorphs, and totally different mechanoluminescence properties. Materials Horizons, 2016, 3, 220-225.	6.4	228
7	Triboluminescence: Recalling Interest and New Aspects. CheM, 2018, 4, 943-971.	5.8	216
8	Unusual Aggregationâ€łnduced Emission of a Coumarin Derivative as a Result of the Restriction of an Intramolecular Twisting Motion. Angewandte Chemie - International Edition, 2015, 54, 14492-14497.	7.2	207
9	Abnormal room temperature phosphorescence of purely organic boron-containing compounds: the relationship between the emissive behaviorand the molecular packing, and the potential related applications. Chemical Science, 2017, 8, 8336-8344.	3.7	176
10	From ACQ to AIE: the suppression of the strong Ï€â€"̈̈€ interaction of naphthalene diimide derivatives through the adjustment of their flexible chains. Chemical Communications, 2016, 52, 11496-11499.	2.2	145
11	Unexpected room-temperature phosphorescence from a non-aromatic, low molecular weight, pure organic molecule through the intermolecular hydrogen bond. Materials Chemistry Frontiers, 2018, 2, 2124-2129.	3.2	138

Aggregationâ€induced emission: Red and nearâ€infrared organic lightâ€emitting diodes. SmartMat, 2021, 2,
$326-346$.

Benzene-cored AIEgens for deep-blue OLEDs: high performance without hole-transporting layers, and unexpected excellent host for orange emission as a side-effect. Chemical Science, 2016, 7, 4355-4363.
3.7

85

21 Mechanoluminescence from pure hydrocarbon AlEgen. Chemical Communications, 2017, 53, 11330-11333.
2.2

79

22 Using the isotope effect to probe an aggregation induced emission mechanism: theoretical prediction and experimental validation. Chemical Science, 2016, 7, 5573-5580.
3.7

67

23 Thermally Activated Delayed Fluorescent Polymers. Journal of Polymer Science Part A, 2017, 55, 575-584.
2.5

62

Recent Advances in the $\langle\mathrm{i}\rangle \mathrm{Z}\langle\mid \mathrm{i}\rangle \mid\langle\mathrm{i}\rangle \mathrm{E}\langle\mid \mathrm{i}\rangle \mathrm{a} € \ldots$...lsomers of Tetraphenylethene Derivatives: Stereoselective
24 Synthesis, AIE Mechanism, Photophysical Properties, and Application as Chemical Probes. Chemistry - an Asian Journal, 2019, 14, 2524-2541.
Similar or Totally Different: the Adjustment of the Twist Conformation Through Minor Structural
25 Modification, and Dramatically Improved Performance for Dyeâ€Sensitized Solar Cell. Advanced Energy
$10.2 \quad 51$
Materials, 2015, 5, 1500846.

26 Development of aggregated state chemistry accelerated by aggregation-induced emission. National Science Review, 2021, 8, nwaal99.
4.6

51

27 The Progress of Circularly Polarized Luminescence in Chiral Purely Organic Materials. Advanced

Photonics Research, 2021, 2, 2000136.

Reaction-based conjugated polymer fluorescent probe for mercury(<scp>ii</scp>): good sensing
Reaction-based conjugated polymer fluorescent probe for mercury(<scpsii</scp>): good
performance with â€œturn-onâ€ ${ }^{\text {signal output. Polymer Chemistry, 2017, 8, 2221-2226. }}$
1.9

48

29 Tetraphenylcyclopentadiene Derivatives: Aggregationâ€induced Emission, Adjustable Luminescence from
29 Green to Blue, Efficient Undoped OLED Performance and Good Mechanochromic Properties. Small,
5.2 2016, 12, 6623-6632.

30 The marriage of AIE and interface engineering: convenient synthesis and enhanced photovoltaic performance. Chemical Science, 2017, 8, 3750-3758.

Structural Design of Blueâ€toâ€Red Thermallyâ€Activated Delayed Fluorescence Molecules by Adjusting the
31 Strength between Donor and Acceptor. Asian Journal of Organic Chemistry, 2020, 9, 1262-1276.
1.3

41

Diversity of Luminescent Metal Complexes in OLEDs: Beyond Traditional Precious Metals. Chemistry -
1.7

41
an Asian Journal, 2021, 16, 2817-2829.

Influences of Conjugation Extent on the Aggregationâ€induced Emission Quantum Efficiency in Silole
Derivatives: A Computational Study. Chemistry - an Asian Journal, 2015, 10, 2154-2161.
1.7

Different molecular conformation and packing determining mechanochromism and room-temperature
phosphorescence. Science China Materials, 2021, 64, 2813-2823.
3.5

34

New â€œX-typeâ€osecond-order nonlinear optical (NLO) dendrimers: fewer chromophore moieties and high
35 NLO effects. Journal of Materials Chemistry C, 2015, 3, 4545-4552.
2.7

31

Arâ€"Ar<sup>F<|sup>Selfâ€Assembly of Starâ€Shaped Secondâ€Order Nonlinear Optical Chromophores
Achieving Large Macroscopic Nonlinearities. Advanced Electronic Materials, 2017, 3, 1700138.

Effect of Intermolecular Excited-state Interaction on Vibrationally Resolved Optical Spectra in
Organic Molecular Aggregates. Acta Chimica Sinica, 2016, 74, 902.

Pyreneâ€fused Perylene Diimides: New Building Blocks to Construct Nonâ€Fullerene Acceptors With Extremely High Openâ€Єircuit Voltages up to 1.26 â€\%oV. Solar Rrl, 2017, 1, 1700123.

1.42-Fold Enhancement of Blue OLED Device Performance by Simply Changing Alkyl Groups on the Acridine Ring. Cell Reports Physical Science, 2020, 1, 100252.

2.8

Alkyl chain engineering of pyrene-fused perylene diimides: impact on transport ability and microfiber self-assembly. Materials Chemistry Frontiers, 2017, 1, 2341-2348.
3.2

Advances in Pure Organic Mechanoluminescence Materials. Journal of Physical Chemistry Letters,
$\begin{array}{ll}41 & \text { Advances in Pure Organ } \\ 2022,13,5605-5617 .\end{array}$
$2.1 \quad 23$

A Green and Highly Efficient Naphthalimide Visible Photoinitiator with an Ability Initiating Free Radical
Polymerization under Air. Macromolecular Chemistry and Physics, 2018, 219, 1800256.
$1.1 \quad 22$

Modulation of Acceptor Position in Organic Sensitizers: The Optimization of Intramolecular and
Interfacial Charge Transfer Processes. ACS Applied Materials \& Interfaces, 2019, 11, 27648-27657.
4.0

20

44 SERS and NMR Studies of Typical Aggregation-Induced Emission Molecules. Journal of Physical
Chemistry A, 2015, 119, 8049-8054.
1.1

19

45 Photo-crosslinkable second-order nonlinear optical polymer: facile synthesis and enhanced NLO

45 thermostability. Polymer Chemistry, 2018, 9, 3522-3527.
Tetraphenylcyclopentadiene-Based Hyperbranched Polymers: Convenient Syntheses from One Pot
$46 \hat{a} € \propto A$ <sub> $4</$ sub> +B ₂â€.Polymerization and High External Quantum Yields up to 9.74% in
2.2

OLED Devices. Macromolecules, 2019, 52, 896-903.
FTC-containing molecules: large second-order nonlinear optical performance and excellent thermal
47 stability, and the key development of the â€œlsolation Chromophoreâ€•concept. Journal of Materials
2.7

17
Chemistry C, 2016, 4, 11474-11481.
Alkyl chain regulation: distinctive oddâ€"even effects of mechano-luminescence and room-temperature
48 phosphorescence in alkyl substituted carbazole amide derivatives. Journal of Materials Chemistry C,
2021, 9, 12124-12132.
Conjugated or Broken: The Introduction of Isolation Spacer ahead of the Anchoring Moiety and the
Improved Device Performance. ACS Applied Materials \& Interfaces, 2016, 8, 28652-28662.
From main-chain conjugated polymer photosensitizer to hyperbranched polymer photosensitizer:
50 expansion of the polymerization-enhanced photosensitization effect for photodynamic therapy.
2.9

13
Journal of Materials Chemistry B, 0, , .
51 A pyridinium salt with crystalline phase transformation under water vapor and reversible
mechanochromic luminescent properties. Journal of Materials Chemistry C, 2021, 9, 11738-11744.
2.7

12

Utilizing Electroplex Emission to Achieve External Quantum Efficiency up to 18.1% in Nondoped Blue
OLED. Research, 2020, 2020, 8649102.

Elucidation of distinct fluorescence and room-temperature phosphorescence of organic polymorphs
from benzophenoneâ€"borate derivatives. Physical Chemistry Chemical Physics, 2020, 22, 21445-21452.
1.3

11

Intramolecular-locked triphenylamine derivatives with adjustable room temperature
phosphorescence properties by the substituent effect. Materials Chemistry Frontiers, 2021, 6, 33-39.

Room-Temperature Phosphorescence of Nicotinic Acid and Isonicotinic Acid: Efficient Intermolecular

