
Phu Hoang Dang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4784463/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Two new sesquiterpenes from the stems of <i>Miliusa velutina</i> . Natural Product Research, 2022, 36, 553-559.	1.8	2
2	A new flavanone derivative from the rhizomes of <i>Boesenbergia pandurata</i> . Natural Product Research, 2022, 36, 1959-1965.	1.8	5
3	A new diphenylheptanoid from the rhizomes of <i>Curcuma zedoaria</i> . Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2022, 77, 219-223.	1.4	0
4	<i>δ</i> -Tocopherol derivatives from the leaves of <i>Muntingia calabura</i> L Natural Product Research, 2022, 36, 5524-5529.	1.8	2
5	A new phenylheptanoid from the leaves of <i>Gnetum gnemon</i> L Natural Product Research, 2021, 35, 3999-4004.	1.8	4
6	A new furanochromone from the leaves of <i>Mimosa pigra</i> . Natural Product Research, 2021, 35, 3963-3969.	1.8	3
7	α-Conidendrin inhibits the expression of intercellular adhesion molecule-1 induced by tumor necrosis factor-α in human lung adenocarcinoma A549Âcells. European Journal of Pharmacology, 2021, 890, 173651.	3.5	6
8	A new cardenolide glycoside from the roots of <i>Streptocaulon juventas</i> (lour.) merr. (Asclepiadaceae). Natural Product Research, 2021, 35, 1192-1198.	1.8	3
9	A new lignan from the stems of Buchanania lucida Blume (Anacardiaceae). Natural Product Research, 2021, , 1-4.	1.8	2
10	Panduratins Q–Y, dimeric metabolites from Boesenbergia rotunda and their antiausterity activities against the PANC-1 human pancreatic cancer cell line. Phytochemistry, 2021, 183, 112646.	2.9	7
11	A new 7′,9-epoxylignan from the stems of Salacia chinensis. Natural Product Research, 2021, , 1-8.	1.8	2
12	Two new derivatives of 8-prenyl-5,7-dihydroxycoumarin from the stems of Streblus ilicifolius (S.Vidal) Corn. Natural Product Research, 2021, , 1-6.	1.8	3
13	A new 8,3′-neolignan from Solanum procumbens Lour. Natural Product Research, 2021, , 1-8.	1.8	4
14	Tyrosinase Inhibitors from the Stems of Streblus Ilicifolius. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-7.	1.2	2
15	Biological Evaluation of Alkyl Triphenylphosphonium Ostruthin Derivatives as Potential Anti-Inflammatory Agents Targeting the Nuclear Factor κB Signaling Pathway in Human Lung Adenocarcinoma A549 Cells. Biochem, 2021, 1, 107-121.	1.2	2
16	Diarylalkanoids as Potent Tyrosinase Inhibitors from the Stems of Semecarpus caudata. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-8.	1.2	3
17	Decumbic anhydride from the stem barks of <i>Swintonia floribunda</i> (Anacardiaceae). Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2021, 76, 49-53.	1.4	0
18	Two new meroterpenoids from the aerial parts of <i>Ampelopsis cantoniensis</i> (Vitaceae). Journal of Asian Natural Products Research, 2020, 22, 1152-1158.	1.4	4

Phu Hoang Dang

#	Article	IF	CITATIONS
19	Pipercyclobutanamide D, a new member of the cyclobutanamide-type alkaloid, from the roots of Piper nigrum. Journal of Asian Natural Products Research, 2020, 23, 1-7.	1.4	1
20	Synthesis of Alkyl Triphenylphosphonium Ostruthin Derivatives as Potential Cytotoxic Candidates. ChemistrySelect, 2020, 5, 12636-12640.	1.5	2
21	A new cytotoxic cardenolide from the roots of Calotropis gigantea. Natural Product Research, 2020, 35, 1-6.	1.8	4
22	Paratrimerin I, cytotoxic acridone alkaloid from the roots of Paramignya trimera. Natural Product Research, 2020, 35, 1-6.	1.8	3
23	Calosides A–F, Cardenolides from <i>Calotropis gigantea</i> and Their Cytotoxic Activity. Journal of Natural Products, 2020, 83, 385-391.	3.0	19
24	A new lactam 28-norlimonoid from the leaves of <i>Azadirachta indica</i> A. Juss. (Meliaceae). Natural Product Research, 2019, 33, 1903-1908.	1.8	5
25	Nimbandiolactone-21 and nimbandioloxyfuran, two new 28-norlimonoids from the leaves of <i>Azadirachta indica</i> (Meliaceae). Journal of Asian Natural Products Research, 2019, 21, 867-872.	1.4	4
26	A new phenolic acid from the wood of Mangifera gedebe. Natural Product Research, 2019, 35, 1-4.	1.8	6
27	A new lignan from the flowers of Hibiscus sabdariffa L. (Malvaceae). Natural Product Research, 2019, 35, 1-6.	1.8	5
28	A new dimeric alkylresorcinol from the stem barks of <i>Swintonia floribunda</i> (Anacardiaceae). Natural Product Research, 2019, 33, 2883-2889.	1.8	10
29	A New 20-Deoxypseudojujubogenin Glycoside from Bacopa monniera. Chemistry of Natural Compounds, 2018, 54, 124-126.	0.8	4
30	Paratrimerins G and H, two prenylated phenolic compounds from the stems of Paramignya trimera. Phytochemistry Letters, 2018, 23, 78-82.	1.2	15
31	A new bischromanone from the stems of Semecarpus caudata. Natural Product Research, 2018, 32, 1745-1750.	1.8	8
32	A New Compound from the Rhizomes of Boesenbergia pandurata. Natural Product Communications, 2018, 13, 1934578X1801300.	0.5	0
33	A New Alkenylphenol from the Propolis of Stingless Bee Trigona minor. Natural Product Communications, 2018, 13, 1934578X1801300.	0.5	6
34	Constituents of the Rhizomes of <i>Boesenbergia pandurata</i> and Their Antiausterity Activities against the PANC-1 Human Pancreatic Cancer Line. Journal of Natural Products, 2017, 80, 141-148.	3.0	44
35	α-Glucosidase Inhibitory and Cytotoxic Taxane Diterpenoids from the Stem Bark of <i>Taxus wallichiana</i> . Journal of Natural Products, 2017, 80, 1087-1095.	3.0	37
36	Two acridones and two coumarins from the roots of Paramignya trimera. Tetrahedron Letters, 2017, 58, 1553-1557.	1.4	30

Phu Hoang Dang

#	Article	IF	CITATIONS
37	Phytochemical and cytotoxic studies on the leaves of Calotropis gigantea. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2902-2906.	2.2	24
38	$\hat{I}\pm$ -Glucosidase inhibitors from the stem of Mangifera reba. Tetrahedron Letters, 2017, 58, 2280-2283.	1.4	7
39	Lignans from the Roots of <i>Taxus wallichiana</i> and Their α-Glucosidase Inhibitory Activities. Journal of Natural Products, 2017, 80, 1876-1882.	3.0	38
40	Three terpenoid glycosides of Centipeda minima. Phytochemistry Letters, 2017, 21, 21-24.	1.2	6
41	Two ring opened oxetane taxoids containing a C-20 benzoyloxy group from the roots of Taxus wallichiana Zucc Tetrahedron Letters, 2017, 58, 3897-3900.	1.4	11
42	Quinoliniumolate and 2 <i>H</i> -1,2,3-Triazole Derivatives from the Stems of <i>Paramignya trimera</i> and Their α-Glucosidase Inhibitory Activities: In Vitro and in Silico Studies. Journal of Natural Products, 2017, 80, 2151-2155.	3.0	26
43	Artocarmins G–M, Prenylated 4-Chromenones from the Stems of <i>Artocarpus rigida</i> and Their Tyrosinase Inhibitory Activities. Journal of Natural Products, 2017, 80, 3172-3178.	3.0	23
44	Moracin VN, A New Tyrosinase and Xanthine Oxidase Inhibitor from the Woods of Artocarpus heterophyllus. Natural Product Communications, 2017, 12, 1934578X1701200.	0.5	3
45	A New Cassane-type Diterpene from the Seed of Caesalpinia Sappan. Natural Product Communications, 2016, 11, 1934578X1601100.	0.5	1
46	Anti-cholinesterases and memory improving effects of Vietnamese Xylia xylocarpa. Chemistry Central Journal, 2016, 10, 48.	2.6	13
47	Design and synthesis of chalcone derivatives as potential non-purine xanthine oxidase inhibitors. SpringerPlus, 2016, 5, 1789.	1.2	24
48	Cassane diterpenes from the seed kernels of Caesalpinia sappan. Phytochemistry, 2016, 122, 286-293.	2.9	36
49	Three new cassane-type furanoditerpenes from the seed of Vietnamese Caesalpinia bonducella. Phytochemistry Letters, 2015, 13, 99-102.	1.2	5
50	α-Glucosidase inhibitors from the leaves of Embelia ribes. Fìtoterapìâ, 2015, 100, 201-207.	2.2	30
51	Geranyl Dihydrochalcones from Artocarpus altilis and Their Antiausteric Activity. Planta Medica, 2014, 80, 193-200.	1.3	23
52	<i>α</i> â€Glucosidase Inhibitors from the Stems of <i>Embelia ribes</i> . Phytotherapy Research, 2014, 28, 1632-1636.	5.8	37
53	Cleistanthane diterpenes from the seed of Caesalpinia sappan and their antiausterity activity against PANC-1 human pancreatic cancer cell line. FìtoterapìÁ¢, 2013, 91, 148-153.	2.2	36
54	Three new geranyl aurones from the leaves of Artocarpus altilis. Phytochemistry Letters, 2012, 5, 647-650.	1.2	23