Jiyong Fang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4784457/publications.pdf Version: 2024-02-01

LIVONG FANG

#	Article	IF	CITATIONS
1	A wormhole-like porous carbon/magnetic particles composite as an efficient broadband electromagnetic wave absorber. Nanoscale, 2016, 8, 8899-8909.	5.6	310
2	Rice husk-based hierarchically porous carbon and magnetic particles composites for highly efficient electromagnetic wave attenuation. Journal of Materials Chemistry C, 2017, 5, 4695-4705.	5.5	152
3	A new method for an efficient porous carbon/Fe3O4 composite based electromagnetic wave absorber derived from a specially designed polyimide. Composites Part B: Engineering, 2018, 155, 148-155.	12.0	46
4	A carbon fiber based three-phase heterostructure composite CF/Co _{0.2} Fe _{2.8} O ₄ /PANI as an efficient electromagnetic wave absorber in the K _u band. RSC Advances, 2015, 5, 50024-50032.	3.6	36
5	New promising hybrid materials for electromagnetic interference shielding with improved stability and mechanical properties. Physical Chemistry Chemical Physics, 2013, 15, 21043.	2.8	34
6	Cobalt magnetic particles and carbon composite microtubes as high-performance electromagnetic wave absorbers. Journal of Materials Chemistry C, 2021, 9, 2474-2482.	5.5	22
7	In situ growth of globular MnO2 nanoflowers inside hierarchical porous mangosteen shells-derived carbon for efficient electromagnetic wave absorber. Journal of Alloys and Compounds, 2022, 903, 163826.	5.5	22
8	Novel ternary Fe3O4@polyaniline/polyazomethine/polyetheretherketone crosslinked hybrid membranes: fabrication, thermal properties and electromagnetic behaviours. RSC Advances, 2014, 4, 11159.	3.6	18
9	A MWCNT–nanoparticle composite as a highly efficient lightweight electromagnetic wave absorber in the range of 4–18 GHz. RSC Advances, 2016, 6, 4695-4704.	3.6	16
10	Development of a Crosslinked Pore-filling Membrane with an Extremely Low Swelling Ratio and Methanol Crossover for Direct Methanol Fuel Cells. Electrochimica Acta, 2017, 232, 226-235.	5.2	16
11	A WORM type polymer electrical memory based on polyethersulfone with carbazole derivatives. High Performance Polymers, 2016, 28, 1183-1191.	1.8	4
12	A low-cost and effective bagasse-based magnetic porous biochar as an adsorbent for solid phase extraction of triazine herbicides in brown sugar. Analytical Methods, 2021, 13, 3585-3591.	2.7	2
13	A low onset voltage WORM type polymer memory based on functional PES. Journal of Applied Polymer Science, 2015, 132, .	2.6	1