
Sarah R Leist

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4784266/publications.pdf Version: 2024-02-01

SADAH DIFIST

#	Article	IF	CITATIONS
1	ExÂvivo and inÂvivo suppression of SARS-CoV-2 with combinatorial AAV/RNAi expression vectors. Molecular Therapy, 2022, 30, 2005-2023.	3.7	10
2	A Multitrait Locus Regulates Sarbecovirus Pathogenesis. MBio, 2022, 13, .	1.8	11
3	SARS-CoV-2 infection produces chronic pulmonary epithelial and immune cell dysfunction with fibrosis in mice. Science Translational Medicine, 2022, 14, .	5.8	55
4	Baseline T cell immune phenotypes predict virologic and disease control upon SARS-CoV infection in Collaborative Cross mice. PLoS Pathogens, 2021, 17, e1009287.	2.1	22
5	SARS-CoV-2 infection is effectively treated and prevented by EIDD-2801. Nature, 2021, 591, 451-457.	13.7	320
6	Prevention and therapy of SARS-CoV-2 and the B.1.351 variant in mice. Cell Reports, 2021, 36, 109450.	2.9	38
7	COVID-19 vaccine mRNA-1273 elicits a protective immune profile in mice that is not associated with vaccine-enhanced disease upon SARS-CoV-2 challenge. Immunity, 2021, 54, 1869-1882.e6.	6.6	59
8	Chimeric spike mRNA vaccines protect against Sarbecovirus challenge in mice. Science, 2021, 373, 991-998.	6.0	144
9	Protective Efficacy of Rhesus Adenovirus COVID-19 Vaccines against Mouse-Adapted SARS-CoV-2. Journal of Virology, 2021, 95, e0097421.	1.5	12
10	Novel virus-like nanoparticle vaccine effectively protects animal model from SARS-CoV-2 infection. PLoS Pathogens, 2021, 17, e1009897.	2.1	49
11	Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines. Cell, 2021, 184, 5432-5447.e16.	13.5	131
12	Dissecting strategies to tune the therapeutic potential of SARS-CoV-2–specific monoclonal antibody CR3022. JCI Insight, 2021, 6, .	2.3	34
13	Antibody potency, effector function, and combinations in protection and therapy for SARS-CoV-2 infection in vivo. Journal of Experimental Medicine, 2021, 218, .	4.2	283
14	Stabilized coronavirus spike stem elicits a broadly protective antibody. Cell Reports, 2021, 37, 109929.	2.9	64
15	Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nature Communications, 2020, 11, 222.	5.8	1,376
16	A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures. Nature, 2020, 586, 560-566.	13.7	527
17	High Potency of a Bivalent Human VH Domain in SARS-CoV-2 Animal Models. Cell, 2020, 183, 429-441.e16.	13.5	100
18	A Mouse-Adapted SARS-CoV-2 Induces Acute Lung Injury and Mortality in Standard Laboratory Mice. Cell. 2020, 183, 1070-1085.e12.	13.5	472

SARAH R LEIST

#	Article	IF	CITATIONS
19	SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature, 2020, 586, 567-571.	13.7	1,153
20	Swine acute diarrhea syndrome coronavirus replication in primary human cells reveals potential susceptibility to infection. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26915-26925.	3.3	104
21	Complex Genetic Architecture Underlies Regulation of Influenza-A-Virus-Specific Antibody Responses in the Collaborative Cross. Cell Reports, 2020, 31, 107587.	2.9	31
22	Newcastle disease virus (NDV) expressing the spike protein of SARS-CoV-2 as a live virus vaccine candidate. EBioMedicine, 2020, 62, 103132.	2.7	77
23	SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. Science, 2020, 370, 1464-1468.	6.0	808
24	Rapid identification of a human antibody with high prophylactic and therapeutic efficacy in three animal models of SARS-CoV-2 infection. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29832-29838.	3.3	81
25	Elicitation of Potent Neutralizing Antibody Responses by Designed Protein Nanoparticle Vaccines for SARS-CoV-2. Cell, 2020, 183, 1367-1382.e17.	13.5	420
26	Cell and animal models of SARS-CoV-2 pathogenesis and immunity. DMM Disease Models and Mechanisms, 2020, 13, .	1.2	46
27	A Newcastle Disease Virus (NDV) Expressing a Membrane-Anchored Spike as a Cost-Effective Inactivated SARS-CoV-2 Vaccine. Vaccines, 2020, 8, 771.	2.1	61
28	SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract. Cell, 2020, 182, 429-446.e14.	13.5	1,257
29	Remdesivir Inhibits SARS-CoV-2 in Human Lung Cells and Chimeric SARS-CoV Expressing the SARS-CoV-2 RNA Polymerase in Mice. Cell Reports, 2020, 32, 107940.	2.9	412
30	An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Science Translational Medicine, 2020, 12, .	5.8	886
31	H2 influenza A virus is not pathogenic in Tmprss2 knock-out mice. Virology Journal, 2020, 17, 56.	1.4	13
32	Genetically Engineering a Susceptible Mouse Model for MERS-CoV-Induced Acute Respiratory Distress Syndrome. Methods in Molecular Biology, 2020, 2099, 137-159.	0.4	11
33	Increasing the translation of mouse models of MERS coronavirus pathogenesis through kinetic hematological analysis. PLoS ONE, 2019, 14, e0220126.	1.1	13
34	Tmprss2 knock-out mice are resistant to H10 influenza A virus pathogenesis. Journal of General Virology, 2019, 100, 1073-1078.	1.3	26
35	Complement Activation Contributes to Severe Acute Respiratory Syndrome Coronavirus Pathogenesis. MBio, 2018, 9, .	1.8	557
36	Modeling pathogenesis of emergent and pre-emergent human coronaviruses in mice. Mammalian Genome, 2018, 29, 367-383.	1.0	17

SARAH R LEIST

#	Article	IF	CITATIONS
37	Of mice and men: the host response to influenza virus infection. Mammalian Genome, 2018, 29, 446-470.	1.0	19
38	Combination Attenuation Offers Strategy for Live Attenuated Coronavirus Vaccines. Journal of Virology, 2018, 92, .	1.5	58
39	Giving the Genes a Shuffle: Using Natural Variation to Understand Host Genetic Contributions to Viral Infections. Trends in Genetics, 2018, 34, 777-789.	2.9	29
40	Middle East Respiratory Syndrome Coronavirus Nonstructural Protein 16 Is Necessary for Interferon Resistance and Viral Pathogenesis. MSphere, 2017, 2, .	1.3	92
41	Broad-spectrum antiviral CS-5734 inhibits both epidemic and zoonotic coronaviruses. Science Translational Medicine, 2017, 9, .	5.8	1,279
42	Influenza H3N2 infection of the collaborative cross founder strains reveals highly divergent host responses and identifies a unique phenotype in CAST/EiJ mice. BMC Genomics, 2016, 17, 143.	1.2	48
43	Lst1 deficiency has a minor impact on course and outcome of the host response to influenza A H1N1 infections in mice. Virology Journal, 2016, 13, 17.	1.4	5
44	In vivo knockdown of Piccolino disrupts presynaptic ribbon morphology in mouse photoreceptor synapses. Frontiers in Cellular Neuroscience, 2014, 8, 259.	1.8	44
45	Remdesivir Potently Inhibits SARS-CoV-2 in Human Lung Cells and Chimeric SARS-CoV Expressing the SARS-CoV-2 RNA Polymerase in Mice. SSRN Electronic Journal, 0, , .	0.4	15
46	Therapeutic Potential of SARS-CoV-2-Specific Monoclonal Antibody CR3022. SSRN Electronic Journal, 0,	0.4	1