Ganji Purnachandra Nagaraju

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4784262/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeting the tumor microenvironment of pancreatic ductal adenocarcinoma using nano-phytomedicines. Seminars in Cancer Biology, 2022, 86, 1155-1162.	9.6	10
2	Epigenetics in hepatocellular carcinoma. Seminars in Cancer Biology, 2022, 86, 622-632.	9.6	64
3	Contemporary clinical trials in pancreatic cancer immunotherapy targeting PD-1 and PD-L1. Seminars in Cancer Biology, 2022, 86, 616-621.	9.6	18
4	Regulatory T cells: Their role in tripleâ€negative breast cancer progression and metastasis. Cancer, 2022, 128, 1171-1183.	4.1	26
5	Targeting T regulatory cells: Their role in colorectal carcinoma progression and current clinical trials. Pharmacological Research, 2022, 178, 106197.	7.1	2
6	Cancer Stem Cells and Circulatory Tumor Cells Promote Breast Cancer Metastasis. Clinical Breast Cancer, 2022, 22, 507-514.	2.4	6
7	Computational analysis of nuclear factor-ήB and resveratrol in colorectal cancer. Journal of Biomolecular Structure and Dynamics, 2021, 39, 2914-2922.	3.5	9
8	Nanoparticles guided drug delivery and imaging in gastric cancer. Seminars in Cancer Biology, 2021, 69, 69-76.	9.6	27
9	Heat Shock Protein-90 Inhibition Alters Activation of Pancreatic Stellate Cells and Enhances the Efficacy of PD-1 Blockade in Pancreatic Cancer. Molecular Cancer Therapeutics, 2021, 20, 150-160.	4.1	30
10	Nanomaterials multifunctional behavior for enlightened cancer therapeutics. Seminars in Cancer Biology, 2021, 69, 178-189.	9.6	29
11	Engineered nanoparticles for imaging and drug delivery in colorectal cancer. Seminars in Cancer Biology, 2021, 69, 293-306.	9.6	60
12	Horizons of nanotechnology applications in female specific cancers. Seminars in Cancer Biology, 2021, 69, 376-390.	9.6	24
13	Association between Circadian Clock and Tumour Microenvironment in Breast Cancer. Critical Reviews in Oncogenesis, 2021, 26, 43-51.	0.4	1
14	Understanding the function of the tumor microenvironment, and compounds from marine organisms for breast cancer therapy. World Journal of Biological Chemistry, 2021, 12, 15-37.	4.3	4
15	Reactive oxygen species (ROS): Critical roles in breast tumor microenvironment. Critical Reviews in Oncology/Hematology, 2021, 160, 103285.	4.4	41
16	Epigenetics and therapeutic targets in gastrointestinal malignancies. Drug Discovery Today, 2021, 26, 2303-2314.	6.4	6
17	COVID-19: Where is the treatment?. World Journal of Clinical Oncology, 2021, 12, 309-322.	2.3	2

18 Gemcitabine for Pancreatic Cancer Therapy. , 2021, 3, 20.

#	Article	IF	CITATIONS
19	Folate-conjugated nanovehicles: Strategies for cancer therapy. Materials Science and Engineering C, 2020, 107, 110341.	7.3	64
20	Maternal and infant MTHFR gene polymorphisms and non-syndromic oral cleft susceptibility: An updated meta-analysis. Process Biochemistry, 2020, 89, 81-88.	3.7	1
21	Pre-ouzo effect derived fergusonite gadolinium ortho-niobate mesoporous nanospheroids for multimodal bioimaging and photodynamic therapy. Applied Surface Science, 2020, 505, 144584.	6.1	12
22	Advanced glycation end products in diabetes, cancer and phytochemical therapy. Drug Discovery Today, 2020, 25, 1614-1623.	6.4	73
23	Preface: Colorectal Cancer Biology, Diagnosis, and Therapy. Critical Reviews in Oncogenesis, 2020, 25, vii-ix.	0.4	Ο
24	Exosomes as therapeutic solutions for pancreatic cancer. Drug Discovery Today, 2020, 25, 2245-2256.	6.4	8
25	Resveratrol binds and activates RKIP protein in colorectal cancer. Amino Acids, 2020, 52, 1299-1306.	2.7	7
26	Nanotheranostics: Their role in hepatocellular carcinoma. Critical Reviews in Oncology/Hematology, 2020, 151, 102968.	4.4	14
27	Challenges in the Discovery of Novel Therapeutic Agents in Cancer (Part III). Current Drug Metabolism, 2020, 21, 4-5.	1.2	Ο
28	Napabucasin (BBI 608), a potent chemoradiosensitizer in rectal cancer. Cancer, 2020, 126, 3360-3371.	4.1	18
29	Understanding novel COVID-19: Its impact on organ failure and risk assessment for diabetic and cancer patients. Cytokine and Growth Factor Reviews, 2020, 53, 43-52.	7.2	77
30	Resveratrol binds and inhibits transcription factor HIF- \hat{l} ± in pancreatic cancer. Experimental Cell Research, 2020, 394, 112126.	2.6	21
31	HIF- $1\hat{l}\pm$ and RKIP: a computational approach for pancreatic cancer therapy. Molecular and Cellular Biochemistry, 2020, 472, 95-103.	3.1	7
32	Challenges in the Discovery of Novel Therapeutic Agents in Cancer. Current Drug Metabolism, 2020, 20, 931-932.	1.2	0
33	Tumor microenvironment: Challenges and opportunities in targeting metastasis of triple negative breast cancer. Pharmacological Research, 2020, 153, 104683.	7.1	269
34	Challenges in the Discovery of Novel Therapeutic Agents in Cancer. Current Drug Metabolism, 2020, 20, 1004-1005.	1.2	0
35	Theranostic role of RKIP in cancer. , 2020, , 415-434.		2
36	Colorectal Cancer Biology, Diagnosis, and Therapeutic Approaches. Critical Reviews in Oncogenesis, 2020, 25, 71-94.	0.4	41

#	Article	IF	CITATIONS
37	Adiponectin Signaling in Colorectal Cancer. Diagnostics and Therapeutic Advances in GI Malignancies, 2020, , 29-48.	0.2	Ο
38	Challenges in the Discovery of Novel Therapeutic Agents for Cancer Treatment (Part IV). Current Drug Metabolism, 2020, 21, 165-166.	1.2	0
39	Targeting Pathways in GI Malignancies. Diagnostics and Therapeutic Advances in GI Malignancies, 2020, , 1-14.	0.2	Ο
40	Role of Selected Transcription Factors in Pancreatic and Colorectal Cancer Growth and Metastasis. Diagnostics and Therapeutic Advances in GI Malignancies, 2020, , 193-207.	0.2	0
41	The dynamic interactions between the stroma, pancreatic stellate cells and pancreatic tumor development: Novel therapeutic targets. Cytokine and Growth Factor Reviews, 2019, 48, 11-23.	7.2	27
42	Novel tetracycline SBR-22 is a functional moiety deviation and bioactive against multidrug resistant strains. Process Biochemistry, 2019, 85, 213-218.	3.7	0
43	Preface: Oncogenesis: Special Focus on Pancreatic Cancer. Critical Reviews in Oncogenesis, 2019, 24, vii.	0.4	Ο
44	Interaction of heat shock protein 90 with hypoxia inducible factor and signal transducer and activator of transcription in colon cancer. Process Biochemistry, 2019, 86, 151-158.	3.7	3
45	Curcumin and Genistein Enhance the Sensitivity of Pancreatic Cancer to Chemotherapy. , 2019, , 87-109.		2
46	Aquaporins in female specific cancers. Gene, 2019, 700, 60-64.	2.2	11
47	Molecular docking studies of angiogenesis target protein HIF-1α and genistein in breast cancer. Gene, 2019, 701, 169-172.	2.2	37
48	Inhibition of HSP90 overcomes resistance to chemotherapy and radiotherapy in pancreatic cancer. International Journal of Cancer, 2019, 145, 1529-1537.	5.1	46
49	Folate-targeted immunotherapies: Passive and active strategies for cancer. Cytokine and Growth Factor Reviews, 2019, 45, 45-52.	7.2	31
50	Cyclooxygenaseâ€2 in gastrointestinal malignancies. Cancer, 2019, 125, 1221-1227.	4.1	31
51	Pathophysiology, Etiology, Epidemiology of Type 1 Diabetes and Computational Approaches for Immune Targets and Therapy. Critical Reviews in Immunology, 2019, 39, 239-265.	0.5	9
52	Is Adipose Tissue an Immunological Organ?. Critical Reviews in Immunology, 2019, 39, 481-490.	0.5	9
53	Pancreatic cancer resistance to chemotherapy. , 2019, , 171-194.		1
54	Current knowledge on drug resistance and therapeutic approaches to eliminate pancreatic cancer		3

stem cells. , 2019, , 69-80.

#	Article	IF	CITATIONS
55	Biology, pathophysiology, and epidemiology of pancreatic cancer. , 2019, , 1-50.		4
56	Curcumin analogs: Their roles in pancreatic cancer growth and metastasis. International Journal of Cancer, 2019, 145, 10-19.	5.1	33
57	Small molecule tyrosine kinase inhibitors and pancreatic cancer—Trials and troubles. Seminars in Cancer Biology, 2019, 56, 149-167.	9.6	23
58	Molecular docking analysis of nuclear factor- \hat{I}^2 B and genistein interaction in the context of breast cancer. Bioinformation, 2019, 15, 11-17.	0.5	22
59	The Role of Hypoxia Inducible Factor- $1\hat{l}$ ± in Pancreatic Cancer and Diabetes Mellitus. , 2019, , 173-181.		0
60	DNA Fingerprint Technology: Its Application in Detecting Pancreatic Cancer. Critical Reviews in Oncogenesis, 2019, 24, 133-137.	0.4	0
61	Clinical and Immunogenetic Aspects of Systemic Lupus Erythematosus. Critical Reviews in Immunology, 2019, 39, 343-360.	0.5	6
62	Biology of Pancreas and Possible Diseases. , 2019, , 1-25.		0
63	Diabetes with Pancreatic Ductal Adenocarcinoma. , 2019, , 111-131.		0
64	Abstract 354: BBI-608 modulates stemness, angiogenesis and enhances the efficacy of chemoradiotherapy in pre-clinical models of pancreatic cancer. , 2019, , .		0
65	Abstract 205: BBI-608 enhances the activity of chemoradiotherapy in colorectal cancer pre-clinical models. , 2019, , .		0
66	Abstract 3398: Interaction of STAT proteins with genistein: A computational analysis. , 2019, , .		0
67	Phase 1b study of pasireotide, everolimus, and selective internal radioembolization therapy for unresectable neuroendocrine tumors with hepatic metastases. Cancer, 2018, 124, 1992-2000.	4.1	17
68	Targeting autophagy in gastrointestinal malignancy by using nanomaterials as drug delivery systems. Cancer Letters, 2018, 419, 222-232.	7.2	22
69	TPAOH assisted size-tunable Gd ₂ O ₃ @mSi core–shell nanostructures for multifunctional biomedical applications. Chemical Communications, 2018, 54, 747-750.	4.1	21
70	Investigational agents to enhance the efficacy of chemotherapy or radiation in pancreatic cancer. Critical Reviews in Oncology/Hematology, 2018, 126, 201-207.	4.4	16
71	Inhibition of breast cancer metastasis to the lungs with UBS109. Oncotarget, 2018, 9, 36102-36109.	1.8	9

EGFR and FGFR in Growth and Metastasis of Colorectal Cancer. , 2018, , 141-170.

1

#	Article	IF	CITATIONS
73	VEGFR and PDGFR Targeting in Pancreatic Cancer. , 2018, , 83-96.		Ο
74	Current Perspectives on Rhizobacterial-EPS interactions in Alleviation of Stress Responses: Novel Strategies for Sustainable Agricultural Productivity. , 2018, , 33-55.		6
75	5-Lipoxygenase: Its involvement in gastrointestinal malignancies. Critical Reviews in Oncology/Hematology, 2018, 127, 50-55.	4.4	26
76	Abstract 5816: Inhibition of Hsp90 sensitizes pancreatic cancer in vitro and in vivo to chemo-radiotherapy. Cancer Research, 2018, 78, 5816-5816.	0.9	1
77	EGFR and Its Role in Colorectal Cancer. , 2018, , 171-178.		0
78	EGFR and Cytoplasmic Kinase Src Targeting in Pancreatic Cancer. , 2018, , 97-105.		0
79	PIK3-AKT and Its Role in Pancreatic Cancer. , 2018, , 57-61.		0
80	Novel synthetic curcumin analogs as potent antiangiogenic agents in colorectal cancer. Molecular Carcinogenesis, 2017, 56, 288-299.	2.7	35
81	Role of hypoxia-inducible factors (HIF) in the maintenance of stemness and malignancy of colorectal cancer. Critical Reviews in Oncology/Hematology, 2017, 113, 22-27.	4.4	84
82	Matrix metalloproteinases: their functional role in lung cancer. Carcinogenesis, 2017, 38, 766-780.	2.8	140
83	Adiponectin: Its role in obesity-associated colon and prostate cancers. Critical Reviews in Oncology/Hematology, 2017, 116, 125-133.	4.4	34
84	Epigenetic effects of inhibition of heat shock protein 90 (HSP90) in human pancreatic and colon cancer. Cancer Letters, 2017, 402, 110-116.	7.2	19
85	Evolution of CaGd ₂ ZnO ₅ :Eu ³⁺ nanostructures for rapid visualization of latent fingerprints. Journal of Materials Chemistry C, 2017, 5, 4246-4256.	5.5	69
86	Specificity protein 1: Its role in colorectal cancer progression and metastasis. Critical Reviews in Oncology/Hematology, 2017, 113, 1-7.	4.4	48
87	Metagenomic Approaches in Understanding the Mechanism and Function of PGPRs: Perspectives for Sustainable Agriculture. , 2017, , 163-182.		6
88	Inhibiting heat shock protein 90 and the ubiquitinâ€proteasome pathway impairs metabolic homeostasis and leads to cell death in human pancreatic cancer cells. Cancer, 2017, 123, 4924-4933.	4.1	20
89	ADIPOQ/adiponectin induces cytotoxic autophagy in breast cancer cells through STK11/LKB1-mediated activation of the AMPK-ULK1 axis. Autophagy, 2017, 13, 1386-1403.	9.1	156
90	Extracellular Polysaccharide Production by Bacteria as a Mechanism of Toxic Heavy Metal		4

Biosorption and Biosequestration in the Marine Environment. , 2017, , 67-85. 90

#	Article	IF	CITATIONS
91	Optimization of Cultural Conditions for Marine Microbial Biosurfactant Production: Future Prospects from Untapped Marine Resources. , 2017, , 105-128.		1
92	Establishment of human metastatic colorectal cancer model in rabbit liver: A pilot study. PLoS ONE, 2017, 12, e0177212.	2.5	3
93	Genistein and Its Role in Regulation of AP-1 in Colorectal Cancer. , 2017, , 101-106.		ο
94	Curcumin Suppresses Colorectal Cancer Growth and Metastasis by Inhibiting NF-κB Activity. , 2017, , 263-267.		0
95	Transcription Factors in Gastrointestinal Malignancies. , 2017, , 1-3.		2
96	Curcumin and Genistein Role in Regulation of STAT-3 in Pancreatic Cancer. , 2017, , 427-435.		1
97	Abstract 3319: Elevating adipokine adiponectin level can induce cytotoxic autophagy in breast cancer cells and potentiate the efficacy of chemotherapeutic regimens: preclinical studies. , 2017, , .		1
98	YY1 and KLF4: Their Role in Gastrointestinal Malignancies. , 2017, , 5-17.		0
99	Hypoxia-Inducible Factor (HIF)-1α and Its Regulation in Pancreatic Cancer. , 2017, , 371-378.		1
100	Targeting Transcriptional Factors in Gastrointestinal Cancers and Future Prospective. , 2017, , 509-517.		1
101	NF-κB: Its Role in Pancreatic Cancer. , 2017, , 327-339.		Ο
102	Role of Curcumin: A Suppressor of NF-κB Activity in Hepatocellular Carcinoma. , 2017, , 437-447.		0
103	Combination of Tolfenamic acid and curcumin induces colon cancer cell growth inhibition through modulating specific transcription factors and reactive oxygen species. Oncotarget, 2016, 7, 3186-3200.	1.8	50
104	The role of adiponectin in obesity-associated female-specific carcinogenesis. Cytokine and Growth Factor Reviews, 2016, 31, 37-48.	7.2	41
105	Aquaporins: Their role in gastrointestinal malignancies. Cancer Letters, 2016, 373, 12-18.	7.2	45
106	Targeting the Janus-activated kinase-2-STAT3 signalling pathway in pancreatic cancer using the HSP90 inhibitor ganetespib. European Journal of Cancer, 2016, 52, 109-119.	2.8	38
107	Small molecule tolfenamic acid and dietary spice curcumin treatment enhances antiproliferative effect in pancreatic cancer cells via suppressing Sp1, disrupting NF-kB translocation to nucleus and cell cycle phase distribution. Journal of Nutritional Biochemistry, 2016, 31, 77-87.	4.2	42
108	Inhibition of NF-κB translocation by curcumin analogs induces G0/G1 arrest and downregulates thymidylate synthase in colorectal cancer. Cancer Letters, 2016, 373, 227-233.	7.2	63

#	Article	IF	CITATIONS
109	MicroRNAs as biomarkers and prospective therapeutic targets in colon and pancreatic cancers. Tumor Biology, 2016, 37, 97-104.	1.8	11
110	Abstract 4416: Combination of HSP90 and proteasome inhibitor is effective in pancreatic cancer. , 2016, , \cdot		0
111	FAK activation is required for IGF1R-mediated regulation of EMT, migration, and invasion in mesenchymal triple negative breast cancer cells. Oncotarget, 2015, 6, 4757-4772.	1.8	101
112	Biomarkers for personalized medicine in GI cancers. Molecular Aspects of Medicine, 2015, 45, 14-27.	6.4	10
113	Role of adiponectin in obesity related gastrointestinal carcinogenesis. Cytokine and Growth Factor Reviews, 2015, 26, 83-93.	7.2	33
114	Broad targeting of angiogenesis for cancer prevention and therapy. Seminars in Cancer Biology, 2015, 35, S224-S243.	9.6	375
115	Hypoxia inducible factor-1α: Its role in colorectal carcinogenesis and metastasis. Cancer Letters, 2015, 366, 11-18.	7.2	96
116	Designing a broad-spectrum integrative approach for cancer prevention and treatment. Seminars in Cancer Biology, 2015, 35, S276-S304.	9.6	220
117	Antiangiogenic effects of a novel synthetic curcumin analogue in pancreatic cancer. Cancer Letters, 2015, 357, 557-565.	7.2	71
118	Heat shock protein 90 promotes epithelial to mesenchymal transition, invasion, and migration in colorectal cancer. Molecular Carcinogenesis, 2015, 54, 1147-1158.	2.7	78
119	Abstract 3442: Ganetespib sensitizes colorectal cancerin vitroandin vivoto a clinically relevant regimen of radiation and chemotherapy. , 2015, , .		0
120	Abstract 2544: Combination of anti-cancer small molecule tolfenamic acid and curcumin effectively inhibits colon cancer cell growth. , 2015, , .		0
121	Abstract 3778: Inhibition of NF- \hat{I}^{0} B translocation induces GO/G1 arrest and downregulates thymidylate synthase in colorectal cancer. , 2015, , .		0
122	Abstract 4166: Targeting NF-κB by the curcumin and its analogs EF-31 and UBS-109 decreases growth and angiogenesis of colon cancer. , 2015, , .		0
123	Effects of naloxone, serotonin, and dopamine on reproduction of the freshwater crab <i>Barytelphusa guerini</i> . Journal of Experimental Zoology, 2014, 321, 173-182.	1.2	16
124	CHD7 Expression Predicts Survival Outcomes in Patients with Resected Pancreatic Cancer. Cancer Research, 2014, 74, 2677-2687.	0.9	34
125	Molecular mechanisms underlying the divergent roles of SPARC in human carcinogenesis. Carcinogenesis, 2014, 35, 967-973.	2.8	115
126	Imaging and curcumin delivery in pancreatic cancer cell lines using PEGylated α-Gd ₂ (MoO ₄) ₃ mesoporous particles. Dalton Transactions, 2014, 43, 3330-3338.	3.3	34

#	Article	IF	CITATIONS
127	HSP90 inhibition downregulates thymidylate synthase and sensitizes colorectal cancer cell lines to the effect of 5FU-based chemotherapy. Oncotarget, 2014, 5, 9980-9991.	1.8	52
128	Development of Plasmid–Lipid Complexes for Direct Intratumoral Injection. Methods in Molecular Biology, 2014, 1139, 467-476.	0.9	0
129	Abstract 4221: HSP90 as a therapeutic target in colorectal cancer. , 2014, , .		Ο
130	Abstract 4216: Combination of anti-cancer small molecule tolfenamic acid and curcumin or curcumin analog EF31 effectively inhibits pancreatic cancer cell growth. , 2014, , .		0
131	Abstract 1308: Functional inhibition of HSP90 induces G0/G1 arrest and downregulates thymidylate synthase in colorectal cancer. , 2014, , .		0
132	Antiangiogenic effects of ganetespib in colorectal cancer mediated through inhibition of HIF-1α and STAT-3. Angiogenesis, 2013, 16, 903-917.	7.2	72
133	PEGylated α-Gd ₂ (MoO ₄) ₃ Mesoporous Flowers: Synthesis, Characterization, and Biological Application. Crystal Growth and Design, 2013, 13, 4051-4058.	3.0	29
134	Novel synthetic curcumin analogues EF31 and UBS109 are potent DNA hypomethylating agents in pancreatic cancer. Cancer Letters, 2013, 341, 195-203.	7.2	73
135	SPARC and DNA methylation: Possible diagnostic and therapeutic implications in gastrointestinal cancers. Cancer Letters, 2013, 328, 10-17.	7.2	28
136	Crustacean hyperglycemic hormone precursor transcripts in the hemocytes of the crayfish Procambarus clarkii: Novel sequence characteristics relating to gene splicing pattern and transcript stability. General and Comparative Endocrinology, 2013, 186, 80-84.	1.8	13
137	Pleiotropic effects of genistein in metabolic, inflammatory, and malignant diseases. Nutrition Reviews, 2013, 71, 562-572.	5.8	68
138	Developing histone deacetylase inhibitors in the therapeutic armamentarium of pancreatic adenocarcinoma. Expert Opinion on Therapeutic Targets, 2012, 16, 707-718.	3.4	5
139	The impact of curcumin on breast cancer. Integrative Biology (United Kingdom), 2012, 4, 996-1007.	1.3	74
140	SPARC expression induces cell cycle arrest via STAT3 signaling pathway in medulloblastoma cells. Biochemical and Biophysical Research Communications, 2012, 417, 874-879.	2.1	24
141	Exposure to Exogenous Enkephalins Disrupts Reproductive Development in the Eastern Lubber Grasshopper, Romalea microptera (Insecta: Orthoptera). PLoS ONE, 2012, 7, e51126.	2.5	11
142	Abstract 3828: Potent curcumin analogues inhibit pancreatic cancer cell growth and angiogenesis. , 2012, , .		14
143	Abstract 2872: Functional inhibition of HSP90 potentiates the effects of ionizing radiation in colorectal cancer. , 2012, , .		0
144	Abstract 2326: Antiangiogenic effects associated with the inhibition of HSP90 in colorectal cancer. , 2012, , .		0

#	Article	IF	CITATIONS
145	Molecular cloning and sequence of retinoid X receptor in the green crab Carcinus maenas: a possible role in female reproduction. Journal of Endocrinology, 2011, 210, 379-390.	2.6	49
146	Computational analysis and structure predictions of CHH-related peptides from Litopenaeus vannamei. Integrative Biology (United Kingdom), 2011, 3, 218-224.	1.3	4
147	Anti-cancer role of SPARC, an inhibitor of adipogenesis. Cancer Treatment Reviews, 2011, 37, 559-566.	7.7	69
148	Reproductive regulators in decapod crustaceans: an overview. Journal of Experimental Biology, 2011, 214, 3-16.	1.7	260
149	Computational analysis of the structural basis of ligand binding to the crustacean retinoid X receptor. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2010, 5, 317-324.	1.0	6
150	Yolk protein expression in the green crab, Carcinus maenas. Aquaculture, 2010, 298, 325-331.	3.5	15
151	Structural prediction and analysis of VIH-related peptides from selected crustacean species. Bioinformation, 2009, 4, 6-11.	0.5	12
152	Methyl farnesoate couples environmental changes to testicular development in the crab <i>Carcinus maenas</i> . Journal of Experimental Biology, 2008, 211, 2773-2778.	1.7	22
153	Lifelong running reduces oxidative stress and degenerative changes in the testes of mice. Journal of Endocrinology, 2008, 199, 333-341.	2.6	65
154	Is methyl farnesoate a crustacean hormone?. Aquaculture, 2007, 272, 39-54.	3.5	156
155	In vitro methyl farnesoate secretion by mandibular organs isolated from different molt and reproductive stages of the crab Oziotelphusa senex senex. Fisheries Science, 2006, 72, 410-414.	1.6	39
156	Involvement of Methyl Farnesoate in the Regulation of Molting and Reproduction in the Freshwater Crab Oziotelphusa Senex Senex. Journal of Crustacean Biology, 2004, 24, 511-515.	0.8	66
157	The synthesis and effects of prostaglandins on the ovary of the crab Oziotelphusa senex senex. General and Comparative Endocrinology, 2004, 135, 35-41.	1.8	40
158	Mandibular organ: it's relation to body weight, sex, molt and reproduction in the crab, Oziotelphusa senex senex Fabricius (1791). Aquaculture, 2004, 232, 603-612.	3.5	34
159	Methyl farnesoate stimulates gonad development in Macrobrachium malcolmsonii (H. Milne Edwards) (Decapoda, Palaemonidae). Crustaceana, 2003, 76, 1171-1178.	0.3	36
160	Organotin-Induced Hyperglycemia in the Crab, Oziotelphusa senex senex Fabricius. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2001, 56, 315-318.	1.4	2