Daniil Yurchenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4784187/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Offshore crane non-linear stochastic response: novel design and extreme response by a path integration. Ships and Offshore Structures, 2022, 17, 1294-1300.	0.9	5
2	Usefulness of inclined circular cylinders for designing ultra-wide bandwidth piezoelectric energy harvesters: Experiments and computational investigations. Energy, 2022, 239, 122203.	4.5	20
3	Multistability phenomenon in signal processing, energy harvesting, composite structures, and metamaterials: A review. Mechanical Systems and Signal Processing, 2022, 166, 108419.	4.4	136
4	On the analysis of the tristable vibration isolation system with delayed feedback control under parametric excitation. Mechanical Systems and Signal Processing, 2022, 164, 108207.	4.4	29
5	Structural optimisation through material selections for multi-cantilevered vibration electromagnetic energy harvesters. Mechanical Systems and Signal Processing, 2022, 162, 108044.	4.4	14
6	Dynamic response mechanism of the galloping energy harvester under fluctuating wind conditions. Mechanical Systems and Signal Processing, 2022, 166, 108410.	4.4	15
7	Nonlinear dynamics of a new energy harvesting system with quasi-zero stiffness. Applied Energy, 2022, 307, 118159.	5.1	34
8	Global optimisation approach for designing high-efficiency piezoelectric beam-based energy harvesting devices. Nano Energy, 2022, 93, 106684.	8.2	19
9	Improving the performance of a two-sided vibro-impact energy harvester with asymmetric restitution coefficients. International Journal of Mechanical Sciences, 2022, 217, 106983.	3.6	9
10	Stochastic and deterministic responses of an asymmetric quad-stable energy harvester. Mechanical Systems and Signal Processing, 2022, 168, 108672.	4.4	21
11	Stochastic vibration responses of the bistable electromagnetic actuator with elastic boundary controlled by the random signals. Nonlinear Dynamics, 2022, 108, 113-140.	2.7	5
12	Resilience of Critical Infrastructure Systems to Floods: A Coupled Probabilistic Network Flow and LISFLOOD-FP Model. Water (Switzerland), 2022, 14, 683.	1.2	7
13	Performance increase of wave energy harvesting of a guided point absorber. European Physical Journal: Special Topics, 2022, 231, 1465-1473.	1.2	5
14	A novel electromagnetic energy harvester based on the bending of the sole. Applied Energy, 2022, 314, 119000.	5.1	27
15	On the investigation of ash deposition effect on flow-induced vibration energy harvesting. Mechanical Systems and Signal Processing, 2022, 174, 109092.	4.4	5
16	Modeling and analysis of a three-degree-of-freedom piezoelectric vibration energy harvester for broadening bandwidth. Mechanical Systems and Signal Processing, 2022, 176, 109169.	4.4	32
17	Structural acoustic controlled active micro-perforated panel absorber for improving wide-band low frequency sound absorption. Mechanical Systems and Signal Processing, 2022, 178, 109295.	4.4	9
18	Post-grazing dynamics of a vibro-impacting energy generator. Journal of Sound and Vibration, 2021, 492, 115811.	2.1	16

2

#	Article	IF	CITATIONS
19	A hybrid piezo-dielectric wind energy harvester for high-performance vortex-induced vibration energy harvesting. Mechanical Systems and Signal Processing, 2021, 150, 107212.	4.4	113
20	Rotational energy harvesting for self-powered sensing. Joule, 2021, 5, 1074-1118.	11.7	172
21	Multi-dimensional constrained energy optimization of a piezoelectric harvester for E-gadgets. IScience, 2021, 24, 102749.	1.9	24
22	A novel high-power density, low-frequency electromagnetic vibration energy harvester based on anti-phase motion. Energy Conversion and Management, 2021, 238, 114175.	4.4	25
23	Nonlinear vibration mitigation of a crane's payload using pendulum absorber. Mechanical Systems and Signal Processing, 2021, 156, 107558.	4.4	18
24	Perspectives in flow-induced vibration energy harvesting. Applied Physics Letters, 2021, 119, 100502.	1.5	58
25	Machine learning based prediction of piezoelectric energy harvesting from wake galloping. Mechanical Systems and Signal Processing, 2021, 160, 107876.	4.4	51
26	Updatable Probabilistic Evaluation of Failure Rates of Mechanical Components in Power Take-Off Systems of Tidal Stream Turbines. Energies, 2021, 14, 6586.	1.6	1
27	Energy harvesting from a novel contact-type dielectric elastomer generator. Energy Conversion and Management, 2020, 205, 112351.	4.4	44
28	Energy harvesting from a dynamic vibro-impact dielectric elastomer generator subjected to rotational excitations. Nonlinear Dynamics, 2020, 102, 1271-1284.	2.7	27
29	Dynamic response of the spherical pendulum subjected to horizontal Lissajous excitation. Nonlinear Dynamics, 2020, 102, 2125-2142.	2.7	10
30	Wind energy harvesting from a conventional turbine structure with an embedded vibro-impact dielectric elastomer generator. Journal of Sound and Vibration, 2020, 487, 115616.	2.1	36
31	Hybrid wind energy scavenging by coupling vortex-induced vibrations and galloping. Energy Conversion and Management, 2020, 213, 112835.	4.4	150
32	Important considerations in optimising the structural aspect of a SDOF electromagnetic vibration energy harvester. Journal of Sound and Vibration, 2020, 482, 115470.	2.1	26
33	A two-stage electromagnetic coupling and structural optimisation for vibration energy harvesters. Smart Materials and Structures, 2020, 29, 085030.	1.8	10
34	Enhancement of low-speed piezoelectric wind energy harvesting by bluff body shapes: Spindle-like and butterfly-like cross-sections. Aerospace Science and Technology, 2020, 103, 105898.	2.5	63
35	Design, modeling and experiments of broadband tristable galloping piezoelectric energy harvester. Acta Mechanica Sinica/Lixue Xuebao, 2020, 36, 592-605.	1.5	110
36	Enhancing vortex-induced vibrations of a cylinder with rod attachments for hydrokinetic power generation. Mechanical Systems and Signal Processing, 2020, 145, 106912.	4.4	47

#	Article	IF	CITATIONS
37	The state-of-the-art review on energy harvesting from flow-induced vibrations. Applied Energy, 2020, 267, 114902.	5.1	361
38	Dynamics of the double-beam piezo–magneto–elastic nonlinear wind energy harvester exhibiting galloping-based vibration. Nonlinear Dynamics, 2020, 100, 1963-1983.	2.7	51
39	Increased power output of an electromagnetic vibration energy harvester through anti-phase resonance. Mechanical Systems and Signal Processing, 2019, 116, 129-145.	4.4	47
40	Predicting energy output of a stochastic nonlinear dielectric elastomer generator. Energy Conversion and Management, 2019, 196, 1445-1452.	4.4	15
41	Stability and bifurcation analysis of the period-T motion of a vibroimpact energy harvester. Nonlinear Dynamics, 2019, 98, 1807-1819.	2.7	21
42	A double-beam piezo-magneto-elastic wind energy harvester for improving the galloping-based energy harvesting. Applied Physics Letters, 2019, 115, .	1.5	181
43	Harvest wind energy from a vibro-impact DEG embedded into a bluff body. Energy Conversion and Management, 2019, 199, 111993.	4.4	85
44	High-performance piezoelectric wind energy harvester with Y-shaped attachments. Energy Conversion and Management, 2019, 181, 645-652.	4.4	388
45	Advantages of nonlinear energy harvesting with dielectric elastomers. Journal of Sound and Vibration, 2019, 442, 167-182.	2.1	57
46	On mechanical damping of cantilever beam-based electromagnetic resonators. Mechanical Systems and Signal Processing, 2019, 119, 120-137.	4.4	30
47	On energy harvesting from a vibro-impact oscillator with dielectric membranes. Mechanical Systems and Signal Processing, 2018, 107, 105-121.	4.4	55
48	Parametric pendulum based wave energy converter. Mechanical Systems and Signal Processing, 2018, 99, 504-515.	4.4	59
49	Pendulum energy converter excited by random loads. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2018, 98, 349-366.	0.9	18
50	Dynamics and optimization of a new double-axle flexible bogie for high-speed trains. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232, 1549-1558.	1.3	5
51	Implementing a GPU-based numerical algorithm for modelling dynamics of a high-speed train. Vehicle System Dynamics, 2018, 56, 621-637.	2.2	1
52	Optimal investment strategies in a certain class of stochastic Merton's terminal wealth problems. International Journal of Dynamics and Control, 2017, 5, 771-782.	1.5	1
53	Maximization of viability time in aÂmathematical model of cancer therapy. Mathematical Biosciences, 2017, 294, 110-119.	0.9	13
54	Parametric study of a novel vibro-impact energy harvesting system with dielectric elastomer. Applied Energy, 2017, 208, 456-470.	5.1	67

#	Article	IF	CITATIONS
55	Suppression of self-excited vibrations by a random parametric excitation. Nonlinear Dynamics, 2017, 90, 1671-1679.	2.7	4
56	Energy harvesting from a DE-based dynamic vibro-impact system. Smart Materials and Structures, 2017, 26, 105001.	1.8	41
57	GPU computing for accelerating the numerical Path Integration approach. Computers and Structures, 2016, 171, 46-53.	2.4	24
58	Dynamics of a parametric rotating pendulum under a realistic wave profile. International Journal of Dynamics and Control, 2016, 4, 233-238.	1.5	15
59	On enhancement of vibration-based energy harvesting by a random parametric excitation. Journal of Sound and Vibration, 2016, 366, 407-417.	2.1	36
60	Enhancing energy harvesting by a linear stochastic oscillator. Probabilistic Engineering Mechanics, 2016, 43, 1-4.	1.3	6
61	Experimental investigation of a rotating parametric pendulum. Nonlinear Dynamics, 2015, 81, 201-213.	2.7	36
62	Tuned Mass and Parametric Pendulum Dampers Under Seismic Vibrations. , 2015, , 1-22.		4
63	Tuned Mass and Parametric Pendulum Dampers Under Seismic Vibrations. , 2015, , 3796-3814.		0
64	Energy Response Probability Density Function of a Rotating Parametric Pendulum. , 2014, , .		0
65	Beneficial Effect of Noise in Suppression of Self-Excited Vibrations. Fluctuation and Noise Letters, 2014, 13, 1450022.	1.0	1
66	Stability, control and reliability of a ship crane payload motion. Probabilistic Engineering Mechanics, 2014, 38, 173-179.	1.3	25
67	Stability of an autoparametric pendulum system with impacts. Journal of Sound and Vibration, 2014, 333, 7233-7247.	2.1	12
68	Stochastic synchronization of rotating parametric pendulums. Meccanica, 2014, 49, 1945-1954.	1.2	11
69	Stochastic rotational response of a parametric pendulum coupled with an SDOF system. Probabilistic Engineering Mechanics, 2014, 37, 124-131.	1.3	20
70	Control and dynamics of a SDOF system with piecewise linear stiffness and combined external excitations. Probabilistic Engineering Mechanics, 2014, 35, 118-124.	1.3	4
71	Solution of the Feedback Control Problem in the Mathematical Model of Leukaemia Therapy. Journal of Optimization Theory and Applications, 2013, 159, 590-605.	0.8	15
72	Noise-induced suppression of resonant vibrations. International Journal of Dynamics and Control, 2013, 1, 277-282.	1.5	0

#	Article	IF	CITATIONS
73	Pendulum's rotational motion governed by a stochastic Mathieu equation. Probabilistic Engineering Mechanics, 2013, 31, 12-18.	1.3	43
74	Stochastic Dynamics of a Parametrically base Excited Rotating Pendulum. Procedia IUTAM, 2013, 6, 160-168.	1.2	17
75	Dynamics of the N-pendulum and its application to a wave energy converter concept. International Journal of Dynamics and Control, 2013, 1, 290-299.	1.5	39
76	Dielectric Elastomers for Energy Harvesting. , 0, , .		11
77	Use of half-cylinder obstacle for enhancing aeroelastic energy harvesting. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-15.	1.2	0