Linda Rinaman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/478418/publications.pdf

Version: 2024-02-01

104 papers 5,725 citations

57719 44 h-index 72 g-index

141 all docs

141 docs citations

141 times ranked

4833 citing authors

#	Article	IF	CITATIONS
1	The role of nucleus of the solitary tract glucagonâ€like peptideâ€1 and prolactinâ€releasing peptide neurons in stress: anatomy, physiology and cellular interactions. British Journal of Pharmacology, 2022, 179, 642-658.	2.7	19
2	Sex and metabolic state interact to influence expression of passive avoidance memory in rats: Potential contribution of A2 noradrenergic neurons. Physiology and Behavior, 2021, 239, 113511.	1.0	5
3	Glucagon-like peptide 1 receptor-mediated stimulation of a GABAergic projection from the bed nucleus of the stria terminalis to the hypothalamic paraventricular nucleus. Neurobiology of Stress, 2021, 15, 100363.	1.9	5
4	Central and peripheral GLP-1 systems independently suppress eating. Nature Metabolism, 2021, 3, 258-273.	5.1	107
5	High Fat Diet Attenuates Cholecystokinin-Induced cFos Activation of Prolactin-Releasing Peptide-Expressing A2 Noradrenergic Neurons in the Caudal Nucleus of the Solitary Tract. Neuroscience, 2020, 447, 113-121.	1.1	8
6	Ghrelin signaling contributes to fasting-induced attenuation of hindbrain neural activation and hypophagic responses to systemic cholecystokinin in rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 318, R1014-R1023.	0.9	11
7	Organization and Postnatal Development of Visceral Sensory Inputs to the Neuroendocrine Hypothalamus. Masterclass in Neuroendocrinology, 2020, , 345-366.	0.1	1
8	Synaptic Inputs to the Mouse Dorsal Vagal Complex and Its Resident Preproglucagon Neurons. Journal of Neuroscience, 2019, 39, 9767-9781.	1.7	30
9	Chronic Suppression of Glucagon-Like Peptide-1 Receptor (GLP1R) mRNA Translation in the Rat Bed Nucleus of the Stria Terminalis Reduces Anxiety-Like Behavior and Stress-Induced Hypophagia, But Prolongs Stress-Induced Elevation of Plasma Corticosterone. Journal of Neuroscience, 2019, 39, 2649-2663.	1.7	29
10	Amphetamine-induced activation of neurons within the rat nucleus of the solitary tract. Physiology and Behavior, 2019, 204, 355-363.	1.0	6
11	Burst activation of dopamine neurons produces prolonged post-burst availability of actively released dopamine. Neuropsychopharmacology, 2018, 43, 2083-2092.	2.8	36
12	Vagal Interoceptive Modulation of Motivated Behavior. Physiology, 2018, 33, 151-167.	1.6	65
13	GLPâ€1 neurons form a local synaptic circuit within the rodent nucleus of the solitary tract. Journal of Comparative Neurology, 2018, 526, 2149-2164.	0.9	27
14	Characterization of the neuroinvasive profile of a pseudorabies virus recombinant expressing the mTurquoise2 reporter in single and multiple injection experiments. Journal of Neuroscience Methods, 2018, 308, 228-239.	1.3	9
15	New horizons for future research – Critical issues to consider for maximizing research excellence and impact. Molecular Metabolism, 2018, 14, 53-59.	3.0	3
16	Interoceptive modulation of neuroendocrine, emotional, and hypophagic responses to stress. Physiology and Behavior, 2017, 176, 195-206.	1.0	44
17	Excitatory Hindbrain–Forebrain Communication Is Required for Cisplatin-Induced Anorexia and Weight Loss. Journal of Neuroscience, 2017, 37, 362-370.	1.7	1
18	Stress & Stress, 2017, 7, 124-136.	1.9	736

#	Article	IF	CITATIONS
19	Excitatory Hindbrain–Forebrain Communication Is Required for Cisplatin-Induced Anorexia and Weight Loss. Journal of Neuroscience, 2017, 37, 362-370.	1.7	35
20	Psychogenic Stress Activates C-Fos in Nucleus Accumbens-Projecting Neurons of the Hippocampal Ventral Subiculum. International Journal of Neuropsychopharmacology, 2017, 20, 855-860.	1.0	10
21	Hindbrain glucagon-like peptide-1 neurons track intake volume and contribute to injection stress-induced hypophagia in meal-entrained rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R906-R916.	0.9	21
22	Maternal high-fat diet increases independent feeding in pre-weanling rat pups. Physiology and Behavior, 2016, 157, 237-245.	1.0	13
23	Nicotine Enhances Footshock- and Lithium Chloride-Conditioned Place Avoidance in Male Rats. Nicotine and Tobacco Research, 2016, 18, 1920-1923.	1.4	7
24	Simplified CLARITY for visualizing immunofluorescence labeling in the developing rat brain. Brain Structure and Function, 2016, 221, 2375-2383.	1.2	44
25	Negative Energy Balance Blocks Neural and Behavioral Responses to Acute Stress by "Silencing" Central Glucagon-Like Peptide 1 Signaling in Rats. Journal of Neuroscience, 2015, 35, 10701-10714.	1.7	73
26	Distribution of glucagon-like peptide 1-immunopositive neurons in human caudal medulla. Brain Structure and Function, 2015, 220, 1213-1219.	1.2	28
27	Glutamatergic phenotype of glucagon-like peptide 1 neurons in the caudal nucleus of the solitary tract in rats. Brain Structure and Function, 2015, 220, 3011-3022.	1.2	60
28	Stress exposure, food intake and emotional state. Stress, 2015, 18, 381-99.	0.8	128
29	Systemic leptin dose-dependently increases STAT3 phosphorylation within hypothalamic and hindbrain nuclei. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 306, R576-R585.	0.9	27
30	Delineation of vagal emetic pathways: intragastric copper sulfate-induced emesis and viral tract tracing in musk shrews. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 306, R341-R351.	0.9	27
31	Cocaine self-administration and extinction alter medullary noradrenergic and limbic forebrain cFos responses to acute, noncontingent cocaine injections in adult rats. Neuroscience, 2014, 281, 241-250.	1.1	8
32	Differential activation of chemically identified neurons in the caudal nucleus of the solitary tract in non-entrained rats after intake of satiating vs. non-satiating meals. Physiology and Behavior, 2014, 136, 47-54.	1.0	47
33	Organization of multisynaptic circuits within and between the medial and the central extended amygdala. Journal of Comparative Neurology, 2013, 521, 3406-3431.	0.9	14
34	Common and distinct neural inputs to the medial central nucleus of the amygdala and anterior ventrolateral bed nucleus of stria terminalis in rats. Brain Structure and Function, 2013, 218, 187-208.	1.2	64
35	Overnight food deprivation markedly attenuates hindbrain noradrenergic, glucagon-like peptide-1, and hypothalamic neural responses to exogenous cholecystokinin in male rats. Physiology and Behavior, 2013, 121, 35-42.	1.0	53
36	Yohimbine anxiogenesis in the elevated plus maze requires hindbrain noradrenergic neurons that target the anterior ventrolateral bed nucleus of the stria terminalis. European Journal of Neuroscience, 2013, 37, 1340-1349.	1.2	23

#	Article	IF	Citations
37	Yohimbine anxiogenesis in the elevated plus maze is disrupted by bilaterally disconnecting the bed nucleus of the stria terminalis from the central nucleus of the amygdala. Neuroscience, 2012, 223, 200-208.	1.1	18
38	Satiation and Stress-Induced Hypophagia: Examining the Role of Hindbrain Neurons Expressing Prolactin-Releasing Peptide or Glucagon-Like Peptide 1. Frontiers in Neuroscience, 2012, 6, 199.	1.4	51
39	Early life experience shapes the functional organization of stress-responsive visceral circuits. Physiology and Behavior, 2011, 104, 632-640.	1.0	30
40	Central neural responses to restraint stress are altered in rats with an early life history of repeated brief maternal separation. Neuroscience, 2011, 192, 413-428.	1.1	21
41	Immune challenge activates neural inputs to the ventrolateral bed nucleus of the stria terminalis. Physiology and Behavior, 2011, 104, 257-265.	1.0	16
42	Hindbrain noradrenergic A2 neurons: diverse roles in autonomic, endocrine, cognitive, and behavioral functions. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 300, R222-R235.	0.9	167
43	Transneuronal viral tracing of sensory pathways from the stomach to the brain in the musk shrew, a small animal model for vomiting research. FASEB Journal, 2011, 25, 1075.11.	0.2	0
44	Ascending projections from the caudal visceral nucleus of the solitary tract to brain regions involved in food intake and energy expenditure. Brain Research, 2010, 1350, 18-34.	1.1	234
45	Early experience alters limbic forebrain Fos responses to a stressful interoceptive stimulus in young adult rats. Physiology and Behavior, 2010, 100, 105-115.	1.0	16
46	Repeated brief postnatal maternal separation enhances hypothalamic gastric autonomic circuits in juvenile rats. Neuroscience, 2010, 165, 265-277.	1.1	27
47	Central Fos expression and conditioned flavor avoidance in rats following intragastric administration of bitter taste receptor ligands. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R528-R536.	0.9	45
48	Ondansetron blocks LiCl-induced conditioned place avoidance but not conditioned taste/flavor avoidance in rats. Physiology and Behavior, 2009, 98, 381-385.	1.0	12
49	A potential gastrointestinal link between enhanced postnatal maternal care and reduced anxiety-like behavior in adolescent rats Behavioral Neuroscience, 2009, 123, 1178-1184.	0.6	13
50	Development of Central Visceral Circuits. , 2009, , .		2
51	Noradrenergic inputs to the paraventricular hypothalamus contribute to hypothalamic–pituitary–adrenal axis and central Fos activation in rats after acute systemic endotoxin exposure. Neuroscience, 2008, 156, 1093-1102.	1.1	65
52	M1659 Agonists of Bitter Taste Receptors Activate the Gut-Brain Axis and Influence Food Intake and Gastrointestinal Function in Mice. Gastroenterology, 2008, 134, A-392.	0.6	0
53	Gastrointestinal (GI) infusion of bitter tastants supports conditioned flavor avoidance (CFA) and activates central neural Fos expression. FASEB Journal, 2008, 22, 1185.5.	0.2	0
54	Oxytocin gene deletion mice overconsume palatable sucrose solution but not palatable lipid emulsions. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R1063-R1068.	0.9	76

#	Article	IF	Citations
55	Progressive postnatal increases in Fos immunoreactivity in the forebrain and brain stem of rats after viscerosensory stimulation with lithium chloride. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 292, R1212-R1223.	0.9	13
56	Oxytocin knockout mice demonstrate enhanced intake of sweet and nonsweet carbohydrate solutions. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 292, R1828-R1833.	0.9	106
57	Experimental dissociation of neural circuits underlying conditioned avoidance and hypophagic responses to lithium chloride. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R1495-R1503.	0.9	49
58	Noradrenergic axon terminals contact gastric preautonomic neurons in the paraventricular nucleus of the hypothalamus in rats. Journal of Comparative Neurology, 2007, 501, 608-618.	0.9	19
59	Visceral sensory inputs to the endocrine hypothalamus. Frontiers in Neuroendocrinology, 2007, 28, 50-60.	2.5	80
60	Noradrenergic pathways contribute to hypothalamic activation in rats after LPS. FASEB Journal, 2007, 21, .	0.2	1
61	Characterization of Autonomic Emotional Motor Circuits in Young Rats. FASEB Journal, 2007, 21, A475.	0.2	0
62	Early life experience alters the functional assembly of viscerosensory neural circuits in the brainstem and forebrain of the rat. FASEB Journal, 2007, 21, A462.	0.2	0
63	Ontogeny of hypothalamic-hindbrain feeding control circuits. Developmental Psychobiology, 2006, 48, 389-396.	0.9	24
64	Noradrenergic Inputs to the Bed Nucleus of the Stria Terminalis and Paraventricular Nucleus of the Hypothalamus Underlie Hypothalamic-Pituitary-Adrenal Axis But Not Hypophagic or Conditioned Avoidance Responses to Systemic Yohimbine. Journal of Neuroscience, 2006, 26, 11442-11453.	1.7	66
65	The anxiogenic drug yohimbine activates central viscerosensory circuits in rats. Journal of Comparative Neurology, 2005, 492, 426-441.	0.9	38
66	Dehydration anorexia is attenuated in oxytocin-deficient mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 288, R1791-R1799.	0.9	42
67	Trimethylthiazoline supports conditioned flavor avoidance and activates viscerosensory, hypothalamic, and limbic circuits in rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 288, R1716-R1726.	0.9	30
68	Enhanced initial and sustained intake of sucrose solution in mice with an oxytocin gene deletion. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 289, R1798-R1806.	0.9	99
69	Early Experience Modifies the Postnatal Assembly of Autonomic Emotional Motor Circuits in Rats. Journal of Neuroscience, 2005, 25, 9102-9111.	1.7	89
70	The Role of Central Glucagon-Like Peptide-1 in Mediating the Effects of Visceral Illness: Differential Effects in Rats and Mice. Endocrinology, 2005, 146, 458-462.	1.4	83
71	Postnatal Development of Central Feeding Circuits. , 2004, , 159-194.		9
72	Anterograde Transneuronal Viral Tracing of Central Viscerosensory Pathways in Rats. Journal of Neuroscience, 2004, 24, 2782-2786.	1.7	101

#	Article	IF	Citations
73	Hindbrain contributions to anorexia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2004, 287, R1035-R1036.	0.9	8
74	Enhanced corticosterone concentrations and attenuated Fos expression in the medial amygdala of female oxytocin knockout mice exposed to psychogenic stress. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2004, 287, R1494-R1504.	0.9	56
75	Postnatal development of hypothalamic inputs to the dorsal vagal complex in rats. Physiology and Behavior, 2003, 79, 65-70.	1.0	51
76	Ectopic sympathetic preganglionic neurons maintain proper connectivity in the reeler mutant mouse. Neuroscience, 2003, 118, 439-450.	1.1	13
77	Cholecystokinin and D-fenfluramine inhibit food intake in oxytocin-deficient mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 285, R1037-R1045.	0.9	39
78	Hindbrain Noradrenergic Lesions Attenuate Anorexia and Alter Central cFos Expression in Rats after Gastric Viscerosensory Stimulation. Journal of Neuroscience, 2003, 23, 10084-10092.	1.7	142
79	GLP-1 receptor signaling contributes to anorexigenic effect of centrally administered oxytocin in rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 283, R99-R106.	0.9	85
80	Viscerosensory activation of noradrenergic inputs to the amygdala in rats. Physiology and Behavior, 2002, 77, 723-729.	1.0	34
81	Identification of lingual motor control circuits using two strains of pseudorabies virus. Neuroscience, 2002, 115, 1139-1151.	1.1	56
82	Postnatal development of catecholamine inputs to the paraventricular nucleus of the hypothalamus in rats. Journal of Comparative Neurology, 2001, 438, 411-422.	0.9	75
83	Characterization of the central nervous system innervation of the rat spleen using viral transneuronal tracing. Journal of Comparative Neurology, 2001, 439, 1-18.	0.9	203
84	Progressive Postnatal Assembly of Limbic–Autonomic Circuits Revealed by Central Transneuronal Transport of Pseudorabies Virus. Journal of Neuroscience, 2000, 20, 2731-2741.	1.7	99
85	Connections of Barringtonâ∈™s nucleus to the sympathetic nervous system in rats. Journal of the Autonomic Nervous System, 2000, 79, 117-128.	1.9	63
86	Antagonism of central glucagon-like peptide-1 receptors enhances lipopolysaccharide-induced fever. Autonomic Neuroscience: Basic and Clinical, 2000, 85, 98-101.	1.4	21
87	Lesions of the C1 catecholaminergic neurons of the ventrolateral medulla in rats using anti- $D\hat{l}^2$ H-saporin. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 277, R1063-R1075.	0.9	50
88	Interoceptive stress activates glucagon-like peptide-1 neurons that project to the hypothalamus. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 277, R582-R590.	0.9	150
89	A functional role for central glucagon-like peptide-1 receptors in lithium chloride-induced anorexia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 277, R1537-R1540.	0.9	72
90	Retrograde transynaptic pseudorabies virus infection of central autonomic circuits in neonatal rats. Developmental Brain Research, 1999, 114, 207-216.	2.1	39

#	Article	IF	CITATIONS
91	Distribution of glucose transporter isoform-3 and hexokinase I in the postnatal murine brain1This work was presented in an abstract form at the Pediatric Academic Societies 1998, held in New Orleans, LA.1. Brain Research, 1999, 846, 260-264.	1.1	21
92	Oxytocinergic inputs to the nucleus of the solitary tract and dorsal motor nucleus of the vagus in neonatal rats. Journal of Comparative Neurology, 1998, 399, 101-109.	0.9	123
93	The postnatal emergence of dehydration anorexia in rats is temporally associated with the emergence of dehydration-induced inhibition of gastric emptying. Physiology and Behavior, 1998, 64, 683-687.	1.0	19
94	Central c-Fos expression in neonatal and adult rats after subcutaneous injection of hypertonic saline. Neuroscience, 1997, 79, 1165-1175.	1.1	83
95	Cholecystokinin induces Fos expression in catecholaminergic neurons of the macaque monkey caudal medulla. Brain Research, 1997, 770, 37-44.	1.1	20
96	Cholecystokinin activates catecholaminergic neurons in the caudal medulla that innervate the paraventricular nucleus of the hypothalamus in rats. Journal of Comparative Neurology, 1995, 360, 246-256.	0.9	152
97	Exogenous cholecystokinin activates cFos expression in medullary but not hypothalamic neurons in neonatal rats. Developmental Brain Research, 1994, 77, 140-145.	2.1	53
98	Establishment of vagal sensorimotor circuits during fetal development in rats. Journal of Neurobiology, 1993, 24, 641-659.	3.7	77
99	Distribution and neurochemical phenotypes of caudal medullary neurons activated to express cFos following peripheral administration of cholecystokinin. Journal of Comparative Neurology, 1993, 338, 475-490.	0.9	157
100	Persistence of fluoro-gold following degeneration of labeled motoneurons is due to phagocytosis by microglia and macrophages. Neuroscience, 1991, 44, 765-776.	1.1	76
101	Access to gastric tissue promotes the survival of axotomized neurons in the dorsal motor nucleus of the vagus in neonatal rats. Journal of Comparative Neurology, 1991, 313, 213-226.	0.9	6
102	Thyrotropin-releasing hormone-immunoreactive nerve terminals synapse on the dendrites of gastric vagal motoneurons in the rat. Journal of Comparative Neurology, 1990, 294, 235-251.	0.9	72
103	Ultrastructural localization of thyrotropin-releasing hormone immunoreactivity in the dorsal vagal complex in rat. Neuroscience Letters, 1989, 104, 7-12.	1.0	57
104	The organization of vagal innervation of rat pancreas using cholera toxinâ€"horseradish peroxidase conjugate. Journal of the Autonomic Nervous System, 1987, 21, 109-125.	1.9	76