Luca Urbani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4783826/publications.pdf

Version: 2024-02-01

201385 189595 2,609 56 27 50 h-index citations g-index papers 58 58 58 4143 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Decellularized human liver as a natural 3D-scaffold for liver bioengineering and transplantation. Scientific Reports, 2015, 5, 13079.	1.6	332
2	Extracellular matrix hydrogel derived from decellularized tissues enables endodermal organoid culture. Nature Communications, 2019, 10, 5658.	5.8	281
3	Immunomodulatory effect of a decellularized skeletal muscle scaffold in a discordant xenotransplantation model. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14360-14365.	3.3	176
4	Rapid Expansion of Human Epithelial Stem Cells Suitable for Airway Tissue Engineering. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 156-168.	2.5	169
5	Structural and morphologic evaluation of a novel detergent–enzymatic tissue-engineered tracheal tubular matrix. Journal of Thoracic and Cardiovascular Surgery, 2009, 138, 586-593.	0.4	114
6	The Human Pancreas as a Source of Protolerogenic Extracellular Matrix Scaffold for a New-generation Bioartificial Endocrine Pancreas. Annals of Surgery, 2016, 264, 169-179.	2.1	111
7	Rapid production of human liver scaffolds for functional tissue engineering by high shear stress oscillation-decellularization. Scientific Reports, 2017, 7, 5534.	1.6	79
8	Multi-stage bioengineering of a layered oesophagus with in vitro expanded muscle and epithelial adult progenitors. Nature Communications, 2018, 9, 4286.	5.8	74
9	Immunomodulatory Role of the Extracellular Matrix Within the Liver Disease Microenvironment. Frontiers in Immunology, 2020, 11 , 574276.	2.2	73
10	Vacuum-assisted decellularization: an accelerated protocol to generate tissue-engineered human tracheal scaffolds. Biomaterials, 2017, 124, 95-105.	5.7	70
11	Optimization of Liver Decellularization Maintains Extracellular Matrix Micro-Architecture and Composition Predisposing to Effective Cell Seeding. PLoS ONE, 2016, 11, e0155324.	1.1	69
12	Improvement of diaphragmatic performance through orthotopic application of decellularized extracellular matrix patch. Biomaterials, 2016, 74, 245-255.	5.7	62
13	Amniotic Fluid Stem Cells Restore the Muscle Cell Niche in a ⟨i⟩HSAâ€Cre⟨ i⟩, ⟨i⟩ Smn ⟨sup⟩F7 F7⟨ sup⟩ ⟨ i⟩ Mouse Model. Stem Cells, 2012, 30, 1675-1684.	1.4	61
14	Decellularized colorectal cancer matrix as bioactive microenvironment for in vitro 3D cancer research. Journal of Cellular Physiology, 2018, 233, 5937-5948.	2.0	61
15	Quinazoline-based multi-tyrosine kinase inhibitors: Synthesis, modeling, antitumor and antiangiogenic properties. European Journal of Medicinal Chemistry, 2013, 67, 373-383.	2.6	59
16	Skeletal Muscle Tissue Engineering: Which Cell to Use?. Tissue Engineering - Part B: Reviews, 2013, 19, 503-515.	2.5	58
17	Decellularised skeletal muscles allow functional muscle regeneration by promoting host cell migration. Scientific Reports, 2018, 8, 8398.	1.6	57
18	Exploring Epidermal Growth Factor Receptor (EGFR) Inhibitor Features: The Role of Fused Dioxygenated Rings on the Quinazoline Scaffold. Journal of Medicinal Chemistry, 2010, 53, 1862-1866.	2.9	51

#	Article	IF	Citations
19	Long-term cryopreservation of decellularised oesophagi for tissue engineering clinical application. PLoS ONE, 2017, 12, e0179341.	1.1	51
20	Patient-Derived Scaffolds of Colorectal Cancer Metastases as an Organotypic 3D Model of the Liver Metastatic Microenvironment. Cancers, 2020, 12, 364.	1.7	44
21	Hypoxia Increases Mouse Satellite Cell Clone Proliferation Maintaining both In Vitro and In Vivo Heterogeneity and Myogenic Potential. PLoS ONE, 2012, 7, e49860.	1.1	36
22	Recellularized Colorectal Cancer Patient-Derived Scaffolds as In Vitro Pre-Clinical 3D Model for Drug Screening. Cancers, 2020, 12, 681.	1.7	32
23	Endothelial properties of third-trimester amniotic fluid stem cells cultured in hypoxia. Stem Cell Research and Therapy, 2015, 6, 209.	2.4	31
24	A comparison of tracheal scaffold strategies for pediatric transplantation in a rabbit model. Laryngoscope, 2017, 127, E449-E457.	1.1	31
25	Single-Shot X-Ray Phase-Contrast Computed Tomography with Nonmicrofocal Laboratory Sources. Physical Review Applied, 2017, 7, .	1.5	31
26	Engineered Tissue–Stent Biocomposites as Tracheal Replacements. Tissue Engineering - Part A, 2016, 22, 1086-1097.	1.6	30
27	Dry acellular oesophageal matrix prepared by supercritical carbon dioxide. Journal of Supercritical Fluids, 2016, 115, 33-41.	1.6	28
28	Generation of a Functioning and Self-Renewing Diaphragmatic Muscle Construct. Stem Cells Translational Medicine, 2019, 8, 858-869.	1.6	27
29	Effects on <i>in vitro</i> and <i>in vivo</i> angiogenesis induced by small peptides carrying adhesion sequences. Journal of Peptide Science, 2010, 16, 349-357.	0.8	26
30	Amyloid persistence in decellularized liver: biochemical and histopathological characterization. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2016, 23, 1-7.	1.4	25
31	Decellularized Diaphragmatic Muscle Drives a Constructive Angiogenic Response In Vivo. International Journal of Molecular Sciences, 2018, 19, 1319.	1.8	24
32	Allogenic tissue-specific decellularized scaffolds promote long-term muscle innervation and functional recovery in a surgical diaphragmatic hernia model. Acta Biomaterialia, 2019, 89, 115-125.	4.1	24
33	Tissue Engineered Scaffolds for an Effective Healing and Regeneration: Reviewing Orthotopic Studies. BioMed Research International, 2014, 2014, 1-27.	0.9	23
34	Decellularized material as scaffolds for tissue engineering studies in long gap esophageal atresia. Expert Opinion on Biological Therapy, 2017, 17, 573-584.	1.4	20
35	Monochromatic Propagation-Based Phase-Contrast Microscale Computed-Tomography System with a Rotating-Anode Source. Physical Review Applied, 2019, 11, .	1.5	20
36	Robust phase retrieval for high resolution edge illumination x-ray phase-contrast computed tomography in non-ideal environments. Scientific Reports, 2016, 6, 31197.	1.6	19

#	Article	IF	Citations
37	In Utero Gene Therapy (IUGT) Using GLOBE Lentiviral Vector Phenotypically Corrects the Heterozygous Humanised Mouse Model and Its Progress Can Be Monitored Using MRI Techniques. Scientific Reports, 2019, 9, 11592.	1.6	15
38	Interplay between Cellular and Non-Cellular Components of the Tumour Microenvironment in Hepatocellular Carcinoma. Cancers, 2021, 13, 5586.	1.7	13
39	A Perfusion Bioreactor for Longitudinal Monitoring of Bioengineered Liver Constructs. Nanomaterials, 2021, 11, 275.	1.9	12
40	Synthesis, in vitro and in vivo preliminary evaluation of anti-angiogenic properties of some pyrroloazaflavones. Bioorganic and Medicinal Chemistry, 2011, 19, 448-457.	1.4	10
41	Isolation and Expansion of Muscle Precursor Cells from Human Skeletal Muscle Biopsies. Methods in Molecular Biology, 2016, 1516, 195-204.	0.4	10
42	Long-Term Hematopoietic Engraftment of Congenic Amniotic Fluid Stem Cells After in Utero Intraperitoneal Transplantation to Immune Competent Mice. Stem Cells and Development, 2018, 27, 515-523.	1.1	10
43	Monitoring tissue engineered constructs and protocols with laboratory-based x-ray phase contrast tomography. Acta Biomaterialia, 2022, 141, 290-299.	4.1	10
44	In vitro and in vivo pro-angiogenic effects of thymosin- \hat{l}^2 4-derived peptides. Cellular Immunology, 2011, 271, 299-307.	1.4	8
45	Isolation of esophageal stem cells with potential for therapy. Pediatric Surgery International, 2014, 30, 1249-1256.	0.6	8
46	New Vandetanib analogs: fused tricyclic quinazolines with antiangiogenic potential. Investigational New Drugs, 2012, 30, 594-603.	1.2	7
47	Preservation over time of dried acellular esophageal matrix. Biomedical Physics and Engineering Express, 2018, 4, 065021.	0.6	7
48	Cell metabolism sets the differences between subpopulations of satellite cells (SCs). BMC Cell Biology, 2013, 14, 24.	3.0	6
49	Singleâ€cell <scp>PCR</scp> analysis of murine embryonic stem cells cultured on different substrates highlights heterogeneous expression of stem cell markers. Biology of the Cell, 2013, 105, 549-560.	0.7	6
50	Non-Invasive Longitudinal Bioluminescence Imaging of Human Mesoangioblasts in Bioengineered Esophagi. Tissue Engineering - Part C: Methods, 2019, 25, 103-113.	1.1	6
51	Organ bioengineering for the newborn. Seminars in Pediatric Surgery, 2014, 23, 314-323.	0.5	2
52	ECM-Like Scaffolds: Nature Drives Research. BioMed Research International, 2014, 2014, 1-2.	0.9	0
53	Increased robustness and speed in low-dose phase-contrast tomography with laboratory sources. Proceedings of SPIE, 2016, , .	0.8	0
54	THU-087-A 3-dimensional dynamic model to explore the immunomodulatory properties of the extracellular matrix and their implications in liver fibrosis. Journal of Hepatology, 2019, 70, e199.	1.8	0

#	Article	lF	CITATIONS
55	Correction of Hemoglobin Levels in a Heterozygous Humanized Mouse Model of Thalassemia after Fetal Gene Therapy. Blood, 2014, 124, 3495-3495.	0.6	О
56	Long-term maintenance of dried acellular matrices. , 0, , .		0